000 04125nam a2200769 i 4500
001 5444115
003 IEEE
005 20200421114118.0
006 m o d
007 cr |n|||||||||
008 151221s2010 nju ob 001 eng d
010 _z 2005299697 (print)
020 _a9780471718741
_qelectronic
020 _a0471718742
020 _z9780471679097
_qprint
020 _z1601195656
_qelectronic
020 _z0471679097
_qpaper
020 _z9781601195654
_qelectronic
024 7 _a10.1109/9780471718741
_2doi
035 _a(CaBNVSL)mat05444115
035 _a(IDAMS)0b0000648122294c
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK3255
_b.A74 2005eb
082 0 4 _a621.319/34
_222
082 0 4 _a621.31934
_222
100 1 _aAnders, George J.,
_eauthor.
245 1 0 _aRating of electric power cables in unfavorable thermal environment /
_cGeorge J. Anders.
264 1 _aHoboken, New Jersey :
_bWiley,
_cc2005.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2010]
300 _a1 PDF (xiv, 326 pages).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE Press series on power engineering ;
_v19
504 _aIncludes bibliographical references and index.
505 0 _a1. Review of power cable standard rating methods. -- 2. Ampacity reduction factors for cables crossing thermally unfavorable regions. -- 3. Cable crossings - derating considerations. -- 4. Application of thermal backfills for cables crossing unfavorable thermal environments. -- 5. Special considerations for real-time rating analysis and deeply buried cables. -- 6. Installations involving multiple cables in air. -- 7. Rating of pipe-type cables with slow circulation of dielectric fluid. -- Appendix A: Computations of the mean moisture content in media surrounding underground power cables. -- Appendix B: Estimation of backfill thermal resistivity. -- Appendix C: Equations for dielectric fluid parameters.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aRating of Electric Power Cables in Unfavorable Thermal Environment is the first text to provide you with the computational tools and techniques needed to successfully design and install power cables in areas affected by such factors as outside heat sources, ground moisture, or impediments to heat dissipation. After thoroughly reviewing standard rating models, the author discusses several new techniques designed to improve cable ampacity, as well as new computational techniques for analysis of cyclic loads. To facilitate computational tasks he utilizes six representational model cables throughout the book, including transmission-class, high-voltage, distribution, and bundled types. End-of-chapter summaries, liberal numerical examples, and practical, real world applications make this text a valuable resource for making better design and operation decisions.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aPowerline ampacity.
650 0 _aElectric currents
_xMathematical models.
650 0 _aElectric cables
_xThermal properties.
655 0 _aElectronic books.
695 _aArgon
695 _aArtificial intelligence
695 _aCoatings
695 _aConductors
695 _aDielectric constant
695 _aEquations
695 _aFires
695 _aFluids
695 _aHeating
695 _aIndexes
695 _aPower cables
695 _aTemperature
695 _aVentilation
710 2 _aIEEE Xplore (Online Service),
_edistributor.
710 2 _aJohn Wiley & Sons,
_epublisher.
710 2 _aInstitute of Electrical and Electronics Engineers.
710 2 _aKnovel (Firm)
776 0 8 _iPrint version:
_z9780471679097
830 0 _aIEEE Press series on power engineering ;
_v19
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5444115
942 _cEBK
999 _c59639
_d59639