000 09742nam a2200961 i 4500
001 6739362
003 IEEE
005 20200421114640.0
006 m o d
007 cr |n|||||||||
008 151222s2014 njua ob 001 eng d
010 _z 2013029968 (print)
020 _a9781118824603
_qelectronic
020 _z9781118489994
_qcloth
024 7 _a10.1002/9781118824603
_2doi
035 _a(CaBNVSL)mat06739362
035 _a(IDAMS)0b00006482046d92
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK7872.M25
_bS83 2014eb
082 0 0 _a621.31/042
_223
100 1 _aSudhoff, Scott D.,
_eauthor.
245 1 0 _aPower magnetic devices :
_ba multi-objective design approach /
_cS.D. Sudhoff.
264 1 _aHoboken, New Jersey :
_bJohn Wiley & Sons Inc.,
_c[2014]
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2014]
300 _a1 PDF (xiii, 469 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE press series on power engineering
504 _aIncludes bibliographical references.
505 0 _aPREFACE XI -- CHAPTER 1 OPTIMIZATION-BASED DESIGN 1 -- 1.1 Design Approach 1 -- 1.2 Mathematical Properties of Objective Functions 3 -- 1.3 Single-Objective Optimization Using Newton's Method 5 -- 1.4 Genetic Algorithms: Review of Biological Genetics 8 -- 1.5 The Canonical Genetic Algorithm 11 -- 1.6 Real-Coded Genetic Algorithms 16 -- 1.7 Multi-Objective Optimization and the Pareto-Optimal Front 27 -- 1.8 Multi-Objective Optimization Using Genetic Algorithms 30 -- 1.9 Formulation of Fitness Functions for Design Problems 34 -- 1.10 A Design Example 36 -- CHAPTER 2 MAGNETICS AND MAGNETIC EQUIVALENT CIRCUITS 45 -- 2.1 Ampere's Law, Magnetomotive Force, and Kirchhoff's MMF Law for Magnetic Circuits 46 -- 2.2 Magnetic Flux, Gauss's Law, and Kirchhoff's Flux Law for Magnetic Circuits 49 -- 2.3 Magnetically Conductive Materials and Ohm's Law for Magnetic Circuits 51 -- 2.4 Construction of the Magnetic Equivalent Circuit 61 -- 2.5 Translation of Magnetic Circuits to Electric Circuits: Flux Linkage and Inductance 64 -- 2.6 Representing Fringing Flux in Magnetic Circuits 70 -- 2.7 Representing Leakage Flux in Magnetic Circuits 75 -- 2.8 Numerical Solution of Nonlinear Magnetic Circuits 88 -- 2.9 Permanent Magnet Materials and Their Magnetic Circuit Representation 104 -- 2.10 Finite Element Analysis 108 -- CHAPTER 3 INTRODUCTION TO INDUCTOR DESIGN 113 -- 3.1 Common Inductor Architectures 113 -- 3.2 DC Coil Resistance 115 -- 3.3 DC Inductor Design 118 -- 3.4 Case Study 125 -- 3.5 Closing Remarks 131 -- CHAPTER 4 FORCE AND TORQUE 133 -- 4.1 Energy Storage in Electromechanical Devices 133 -- 4.2 Calculation of Field Energy 135 -- 4.3 Force from Field Energy 138 -- 4.4 Co-Energy 139 -- 4.5 Force from Co-Energy 143 -- 4.6 Conditions for Conservative Fields 144 -- 4.7 Magnetically Linear Systems 145 -- 4.8 Torque 147 -- 4.9 Calculating Force Using Magnetic Equivalent Circuits 148 -- CHAPTER 5 INTRODUCTION TO ELECTROMAGNET DESIGN 154 -- 5.1 Common Electromagnet Architectures 154.
505 8 _a5.2 Magnetic, Electric, and Force Analysis of an EI-Core Electromagnet 155 -- 5.3 EI-Core Electromagnet Design 165 -- 5.4 Case Study 171 -- CHAPTER 6 MAGNETIC CORE LOSS 178 -- 6.1 Eddy Current Losses 178 -- 6.2 Hysteresis Loss and the B-H Loop 186 -- 6.3 Empirical Modeling of Core Loss 191 -- 6.4 Time Domain Modeling of Core Loss 197 -- CHAPTER 7 TRANSFORMER DESIGN 205 -- 7.1 Common Transformer Architectures 205 -- 7.2 T-Equivalent Circuit Model 207 -- 7.3 Steady-State Analysis 211 -- 7.4 Transformer Performance Considerations 213 -- 7.5 Core-Type Transformer Configuration 223 -- 7.6 Core-Type Transformer MEC 230 -- 7.7 Core Loss 236 -- 7.8 Core-Type Transformer Design 238 -- 7.9 Case Study 245 -- 7.10 Closing Remarks 252 -- CHAPTER 8 DISTRIBUTED WINDINGS AND ROTATING ELECTRIC MACHINERY 254 -- 8.1 Describing Distributed Windings 254 -- 8.2 Winding Functions 265 -- 8.3 Air-Gap Magnetomotive Force 268 -- 8.4 Rotating MMF 272 -- 8.5 Flux Linkage and Inductance 273 -- 8.6 Slot Effects and Carter's Coefficient 276 -- 8.7 Leakage Inductance 278 -- 8.8 Resistance 283 -- 8.9 Introduction to Reference Frame Theory 284 -- 8.10 Expressions for Torque 290 -- CHAPTER 9 INTRODUCTION TO PERMANENT MAGNET AC MACHINE DESIGN 299 -- 9.1 Permanent Magnet Synchronous Machines 299 -- 9.2 Operating Characteristics of PMAC Machines 301 -- 9.3 Machine Geometry 309 -- 9.4 Stator Winding 315 -- 9.5 Material Parameters 318 -- 9.6 Stator Currents and Control Philosophy 319 -- 9.7 Radial Field Analysis 320 -- 9.8 Lumped Parameters 325 -- 9.9 Ferromagnetic Field Analysis 327 -- 9.10 Formulation of Design Problem 333 -- 9.11 Case Study 339 -- 9.12 Extensions 346 -- CHAPTER 10 INTRODUCTION TO THERMAL EQUIVALENT CIRCUITS 349 -- 10.1 Heat Energy, Heat Flow, and the Heat Equation 349 -- 10.2 Thermal Equivalent Circuit of One-Dimensional Heat Flow 352 -- 10.3 Thermal Equivalent Circuit of a Cuboidal Region 359 -- 10.4 Thermal Equivalent Circuit of a Cylindrical Region 363 -- 10.5 Inhomogeneous Regions 370.
505 8 _a10.6 Material Boundaries 377 -- 10.7 Thermal Equivalent Circuit Networks 379 -- 10.8 Case Study: Thermal Model of Electromagnet 385 -- CHAPTER 11 AC CONDUCTOR LOSSES 403 -- 11.1 Skin Effect in Strip Conductors 403 -- 11.2 Skin Effect in Cylindrical Conductors 410 -- 11.3 Proximity Effect in a Single Conductor 414 -- 11.4 Independence of Skin and Proximity Effects 416 -- 11.5 Proximity Effect in a Group of Conductors 418 -- 11.6 Relating Mean-Squared Field and Leakage Permeance 422 -- 11.7 Mean-Squared Field for Select Geometries 423 -- 11.8 Conductor Losses in Rotating Machinery 428 -- 11.9 Conductor Losses in a UI-Core Inductor 432 -- 11.10 Closing Remarks 436 -- References 437 -- Problems 437 -- APPENDIX A CONDUCTOR DATA AND WIRE GAUGES 439 -- APPENDIX B SELECTED FERRIMAGNETIC CORE DATA 441 -- APPENDIX C SELECTED MAGNETIC STEEL DATA 443 -- APPENDIX D SELECTED PERMANENT MAGNET DATA 445 -- APPENDIX E PHASOR ANALYSIS 446 -- APPENDIX F TRIGONOMETRIC IDENTITIES 453 -- INDEX 455.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aPresents a multi-objective design approach to the many power magnetic devices in use todayPower Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization.The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for inductor design so readers can start the design process. Core loss is next considered; this material is used to support transformer design. A chapter on force and torque production feeds into a chapter on electromagnet design. This is followed by chapters on rotating machinery and the design of a permanent magnet AC machine. Finally, enhancements to the design process including thermal analysis and AC conductor losses due to skin and proximity effects are set forth.Power Magnetic Devices:. Focuses on the design process as it relates to power magnetic devices such as inductors, transformers, electromagnets, and rotating machinery. Offers a structured design approach based on single- and multi-objective optimization. Helps experienced designers take advantage of new techniques which can yield superior designs with less engineering time. Provides numerous case studies throughout the book to facilitate readers' comprehension of the analysis and design process. includes Powerpoint-slide-based student and instructor lecture notes and MATLAB-based examples, toolboxes, and design codesDesigned to support the educational needs of students, Power Magnetic Devices: A Multi-Objective Design Approach also serves as a valuable reference tool for practicing engineers and designers.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/22/2015.
650 0 _aElectromagnetic devices.
650 0 _aPower electronics.
650 0 _aElectric machinery.
655 0 _aElectronic books.
695 _aConductors
695 _aCorrelation
695 _aCouplings
695 _aDetectors
695 _aEddy currents
695 _aFading
695 _aForce
695 _aHeating
695 _aInductors
695 _aInverters
695 _aIron
695 _aLoss measurement
695 _aMagnetic circuits
695 _aMagnetic hysteresis
695 _aMagnetic losses
695 _aMagnetic resonance imaging
695 _aMagnetics
695 _aMaterials
695 _aMechanical systems
695 _aNoise
695 _aOptimization
695 _aProximity effects
695 _aRandom variables
695 _aRotors
695 _aShafts
695 _aSkin effect
695 _aStator cores
695 _aStator windings
695 _aSteady-state
695 _aStrips
695 _aThermal analysis
695 _aTorque
695 _aTrajectory
695 _aWindings
710 2 _aIEEE Xplore (Online Service),
_edistributor.
710 2 _aWiley,
_epublisher.
776 0 8 _iPrint version
_z9781118489994
830 0 _aIEEE press series on power engineering
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6739362
942 _cEBK
999 _c59929
_d59929