000 07218cam a2200781 i 4500
001 on1048047326
003 OCoLC
005 20220711203142.0
006 m o d
007 cr |||||||||||
008 180804t20182019nju ob 001 0 eng
010 _a 2018037546
040 _aDLC
_beng
_erda
_cDLC
_dOCLCF
_dDG1
_dN$T
_dEBLCP
_dUKMGB
_dUWW
_dCOO
_dDLC
_dOCLCO
_dUKAHL
_dUX1
_dVT2
_dK6U
015 _aGBB956590
_2bnb
016 7 _a019327505
_2Uk
019 _a1100448615
_a1175642953
_a1181905240
020 _a9781119376989
_q(Adobe PDF)
020 _a111937698X
020 _a9781119377009
_q(ePub)
020 _a1119377005
020 _z9781119376972 (hardcover)
020 _a9781119376996
_q(electronic bk.)
020 _a1119376998
_q(electronic bk.)
020 _a1119376971
020 _a9781119376972
029 1 _aUKMGB
_b019327505
029 1 _aCHVBK
_b565571613
029 1 _aCHNEW
_b001048762
029 1 _aAU@
_b000063820694
035 _a(OCoLC)1048047326
_z(OCoLC)1100448615
_z(OCoLC)1175642953
_z(OCoLC)1181905240
037 _a9781119377009
_bWiley
042 _apcc
050 0 0 _aQA76.9.D343
072 7 _aCOM
_x021030
_2bisacsh
082 0 0 _a005.7
_223
049 _aMAIN
100 1 _aVrochidis, Stefanos,
_d1975-
_eauthor.
_94621
245 1 0 _aBig data analytics for large-scale multimedia search /
_cStefanos Vrochidis, Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece, Benoit B. Huet, EURECOM, Sophia-Antipolis, France, Edward Y. Chang, HTC Research & Healthcare San Francisco, USA, Ioannis Kompatsiaris, Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece.
263 _a1812
264 1 _aHoboken, NJ, USA :
_bWiley,
_c[2018]
264 4 _c©2019
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
588 _aDescription based on print version record and CIP data provided by publisher; resource not viewed.
505 0 _aCover; Title Page; Copyright; Contents; Introduction; List of Contributors; About the Companion Website; Part I Feature Extraction from Big Multimedia Data; Chapter 1 Representation Learning on Large and Small Data; 1.1 Introduction; 1.2 Representative Deep CNNs; 1.2.1 AlexNet; 1.2.1.1 ReLU Nonlinearity; 1.2.1.2 Data Augmentation; 1.2.1.3 Dropout; 1.2.2 Network in Network; 1.2.2.1 MLP Convolutional Layer; 1.2.2.2 Global Average Pooling; 1.2.3 VGG; 1.2.3.1 Very Small Convolutional Filters; 1.2.3.2 Multi-scale Training; 1.2.4 GoogLeNet; 1.2.4.1 Inception Modules; 1.2.4.2 Dimension Reduction
505 8 _a1.2.5 ResNet1.2.5.1 Residual Learning; 1.2.5.2 Identity Mapping by Shortcuts; 1.2.6 Observations and Remarks; 1.3 Transfer Representation Learning; 1.3.1 Method Specifications; 1.3.2 Experimental Results and Discussion; 1.3.2.1 Results of Transfer Representation Learning for OM; 1.3.2.2 Results of Transfer Representation Learning for Melanoma; 1.3.2.3 Qualitative Evaluation: Visualization; 1.3.3 Observations and Remarks; 1.4 Conclusions; References; Chapter 2 Concept-Based and Event-Based Video Search in Large Video Collections; 2.1 Introduction
505 8 _a2.2 Video preprocessing and Machine Learning Essentials2.2.1 Video Representation; 2.2.2 Dimensionality Reduction; 2.3 Methodology for Concept Detection and Concept-Based Video Search; 2.3.1 Related Work; 2.3.2 Cascades for Combining Different Video Representations; 2.3.2.1 Problem Definition and Search Space; 2.3.2.2 Problem Solution; 2.3.3 Multi-Task Learning for Concept Detection and Concept-Based Video Search; 2.3.4 Exploiting Label Relations; 2.3.5 Experimental Study; 2.3.5.1 Dataset and Experimental Setup; 2.3.5.2 Experimental Results; 2.3.5.3 Computational Complexity
505 8 _a2.4 Methods for Event Detection and Event-Based Video Search2.4.1 Related Work; 2.4.2 Learning from Positive Examples; 2.4.3 Learning Solely from Textual Descriptors: Zero-Example Learning; 2.4.4 Experimental Study; 2.4.4.1 Dataset and Experimental Setup; 2.4.4.2 Experimental Results: Learning from Positive Examples; 2.4.4.3 Experimental Results: Zero-Example Learning; 2.5 Conclusions; 2.6 Acknowledgments; References; Chapter 3 Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety; 3.1 Introduction; 3.2 Scalability through Parallelization
505 8 _a3.2.1 Process Parallelization3.2.2 Data Parallelization; 3.3 Scalability through Feature Engineering; 3.3.1 Feature Reduction through Spatial Transformations; 3.3.2 Laplacian Matrix Representation; 3.3.3 Parallel latent Dirichlet allocation and bag of words; 3.4 Deep Learning-Based Feature Learning; 3.4.1 Adaptability that Conquers both Volume and Velocity; 3.4.2 Convolutional Neural Networks; 3.4.3 Recurrent Neural Networks; 3.4.4 Modular Approach to Scalability; 3.5 Benchmark Studies; 3.5.1 Dataset; 3.5.2 Spectrogram Creation; 3.5.3 CNN-Based Feature Extraction; 3.5.4 Structure of the CNNs
520 _a"A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability. The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data."--Provided by publisher.
650 0 _aMultimedia data mining.
_94622
650 0 _aBig data.
_94174
650 7 _aCOMPUTERS
_xDatabases
_xData Mining.
_2bisacsh
_94623
650 7 _aBig data.
_2fast
_0(OCoLC)fst01892965
_94174
650 7 _aMultimedia data mining.
_2fast
_0(OCoLC)fst01982691
_94622
655 0 _aElectronic books.
_93294
655 4 _aElectronic books.
_93294
700 1 _aHuet, Benoit,
_eauthor.
_94624
700 1 _aChang, Edward Y.,
_eauthor.
_94625
700 1 _aKompatsiaris, Yiannis,
_eauthor.
_94626
776 0 8 _iPrint version:
_aVrochidis, Stefanos, 1975- author.
_tBig data analytics for large-scale multimedia search
_dHoboken, NJ, USA : Wiley, [2018]
_z9781119376972
_w(DLC) 2018035613
856 4 0 _uhttps://doi.org/10.1002/9781119376996
_zWiley Online Library
942 _cEBK
994 _aC0
_bDG1
999 _c68309
_d68309