000 07478cam a2200697Ii 4500
001 on1027965253
003 OCoLC
005 20220711203230.0
006 m o d
007 cr cnu|||unuuu
008 180308s2018 gw a ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dNLE
_dDG1
_dOCLCF
_dOCLCQ
_dMERER
_dUAB
_dUPM
_dCNCGM
_dRECBK
_dOCLCQ
_dYDX
_dUKMGB
015 _aGBB858964
_2bnb
016 7 _a018794674
_2Uk
019 _a1028167583
_a1028526301
_a1028542328
_a1028601694
_a1028810572
020 _a9783527814992
_q(electronic bk.)
020 _a352781499X
_q(electronic bk.)
020 _a9783527815029
_q(electronic bk. ;
_qoBook)
020 _a3527815023
_q(electronic bk. ;
_qoBook)
020 _z9783527344697
020 _z9783527815012
020 _z3527815015
029 1 _aAU@
_b000062186637
029 1 _aCHNEW
_b001003191
029 1 _aCHVBK
_b516428926
029 1 _aUKMGB
_b018794674
035 _a(OCoLC)1027965253
_z(OCoLC)1028167583
_z(OCoLC)1028526301
_z(OCoLC)1028542328
_z(OCoLC)1028601694
_z(OCoLC)1028810572
037 _a9783527815012
_bWiley
050 4 _aQD547
072 7 _aSCI
_x013050
_2bisacsh
082 0 4 _a541/.33
_223
049 _aMAIN
100 1 _aWood, Kevin R.,
_eauthor.
_95612
245 1 0 _aDesign, simulation and optimization of adsorptive and chromatographic separations :
_ba hands-on approach /
_cKevin R. Wood, Y.A. Liu and Yueying Yu.
264 1 _aWeinheim, Germany :
_bWiley-VCH,
_c[2018]
300 _a1 online resource :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
588 0 _aOnline resource; title from PDF title page (EBSCO, viewed March 08, 2018).
505 0 _a1 SIMULATION OF ADSORPTION PROCESSES 4; 1.1 INTRODUCTION TO GAS-PHASE ADSORPTION TECHNOLOGIES 4; 1.2 CORE CONCEPTS IN GAS ADSORPTION 5; 1.2.1 THE ADSORPTION PROCESS 5; 1.2.2 HOW THE DRIVING FORCES ACHIEVE SEPARATION 6; 1.3 ISOTHERMS 7; 1.3.1 THE LANGMUIR ISOTHERM[8] (1918) 8; 1.3.2 THE LINEAR ISOTHERM 8; 1.3.3 THE BRUNAUER?EMMETT?TELLER (BET) ISOTHERM[9] (1938) 8; 1.3.4 THE FREUNDLICH ISOTHERM[10] (1906) 8; 1.3.5 THE SIPS (LANGMUIR-FREUNDLICH) ISOTHERM[11] (1948) 8; 1.3.6 THE TOTH ISOTHERM[12] (1971) 9; 1.3.7 SUMMARY 9; 1.4 THE PROPERTIES OF PACKED BEDS 9; 1.4.1 VOID FRACTIONS 10; 1.4.2 EXTERNAL VOIDS 11; 1.4.3 INTERNAL VOIDS 11; 1.4.4 DENSITIES 12; 1.4.5 RELATIONSHIPS 13; 1.4.6 GAS-PHASE BEHAVIOR 14; 1.5 PSA AND TSA IMPLEMENTATION DETAILS 15; 1.5.1 COMMON ADSORBENT CHARACTERISTICS 15; 1.5.2 COMMON PROCESS CONFIGURATIONS 16; 1.6 INTRODUCTION TO ASPEN ADSORPTION 18; 1.7 PSA WORKSHOP: ASPEN ADSORPTION MODELING.
505 0 _aFOR AIR SEPARATION 19; 1.7.1 ADDING COMPONENTS TO AN ASPEN ADSORPTION SIMULATION 21; 1.7.2 CREATING A FLOWSHEET IN ASPEN ADSORPTION 26; 1.7.3 SPECIFYING OPERATING CONDITIONS: TABLES AND FORMS 34; 1.7.4 SCHEDULING EVENTS WITH THE CYCLE ORGANIZER 43; 1.7.5 RUNNING AN ASPEN SIMULATION 56; 1.7.6 VIEWING AND EXPORTING SIMULATION RESULTS 56; 1.8 PSA WORKSHOP: HYDROGEN SEPARATION IN ASPEN ADSORPTION 60; 1.8.1 CREATING A FLOWSHEET IN ASPEN ADSORPTION 66; 1.8.2 RUN A BREAKTHOUGH SIMULATION 69; 1.8.3 CREATE THE PSA FLOWSHEET 81; 1.9 PSA WORKSHOP: MODELING HYDROGEN SEPARATION USING GCSS 92; 1.9.1 WORKING WITH MODEL LIBRARIES: ADVANCED FLOWSHEET OPTIONS 97; 1.9.2 INTRODUCTION TO SCRIPTING: SET REPEATED VALUES AND INITIALIZE BLOCKS 110; 1.9.3 INSPECTING BLOCKS: ADVANCED OPERATING CONDITIONS 112; 1.9.4 DEFINING THE CYCLE ORGANIZER 124; 1.9.5 VIEWING RESULTS 128; 1.10 CONCLUSIONS 130; 1.11 PRACTICE PROBLEMS 131; 1.11.1 INTRODUCING A.
505 0 _aGAS_INTERACTION UNIT INTO WORKSHOP 1 131; 1.11.2 NAPTHA UPGRADING USING ADSORPTION 132; 1.12 NOMENCLATURE 137; 1.13 FURTHER READING 139; 1.13.1 BOOKS 139; 1.13.2 JOURNAL ARTICLES SPECIFICALLY UTILIZING ASPEN ADSORPTION 139; 1.13.3 JOURNAL ARTICLES 141; 2 SIMULATION OF SMB CHROMATOGRAPHIC PROCESSES 144; 2.1 INTRODUCTION TO CHROMATOGRAPHY 144; 2.1.1 MATHEMATICAL DIFFERENCES FROM GAS ADSORPTION 144; 2.1.2 THERMODYNAMIC DIFFERENCES FROM GAS ADSORPTION 144; 2.2 INTRODUCTION TO SMB CHROMATOGRAPHY 145; 2.3 SMB IMPLEMENTATION DETAILS 146; 2.3.1 COMMON PROCESS CONFIGURATIONS 146; 2.3.2 M-VALUES 148; 2.3.3 SCALE-UP CONCERNS 149; 2.3.4 PRESSURE DROP LIMITATIONS 150; 2.3.5 INTRODUCTION TO OPERATIONAL MODES 151; 2.4 SMB WORKSHOP: SIMULATE A 4-ZONE SMB IN ASPEN CHROMATOGRAPHY FOR THE SEPARATION OF TRĂ–GERS?S BASE ENANTIOMERS 151; 2.4.1 CREATING A FLOWSHEET IN ASPEN CHROMATOGRAPHY 151; 2.4.2 ADDING COMPONENTS TO AN ASPEN CHROMATOGRAPHY.
505 0 _aSIMULATION 152; 2.4.3 THE CHROM_CCC_SEPARATOR2 BLOCK 153; 2.4.4 VIEWING RESULTS 177; 2.5 TANDEM SMB WORKSHOP: SIMULATE A SEPARATION WITH DUAL SMB COLUMNS 182; 2.6 PRACTICE PROBLEMS 192; 2.6.1 RUN WORKSHOP 2.4 AS A STEADY- STATE SIMULATION 192; 2.6.2 SIMULATION OF AN INDUSTRIAL-SCALE XYLENE SEPARATION USING LITERATURE DATA 193; 2.6.3 SIMULATE A 5-ZONE SMB SYSTEM FOR SEPARATING PHENYLALANINE,
505 0 _aTRYPTOPHAN AND METHIONINE 196; 2.7 FURTHER READING 202; 2.7.1 BOOKS 202; 2.7.2 JOURNAL ARTICLES SPECIFICALLY UTILIZING ASPEN CHROMATOGRAPHY 202; 2.7.3 JOURNAL ARTICLES 205; 3 SHORTCUT DESIGN OF SMB SYSTEMS 209; 3.1 GENERAL CONCEPTS 209; 3.1.1 MASS BALANCES 211; 3.2 TRIANGLE THEORY 213; 3.2.1 NOTATION 213; 3.2.2 INTRODUCTION 214; 3.2.3 CONSTRAINTS ON THE SYSTEM 216; 3.3 TRIANGLE THEORY WORKSHOP: DESIGN OF A SYSTEM FOR THE SEPARATION OF AMINO ACIDS 217; 3.4 EXERCISE 1: CALCULATING TRANSITIONS IN A FIXED BED USING MATHEMATICA 228; 3.4.1 DIFFERENTIAL EQUATIONS? ANALYSIS 228; 3.4.2 CONSTRUCTING THE SOLUTION FROM EIGENVECTORS AND EIGENVALUES 231; 3.4.3 USE THE STEADY- STATE INFORMATION TO CONSTRAIN OPERATING CONDITIONS 232; 3.4.4 EXERCISE 2: CONSTRUCTING THE CONSTRAINTS ON THE TMB SYSTEM IN MATHEMATICA 245; 3.5 STANDING WAVE DESIGN 249; 3.5.1 STANDING WAVE DESIGN IN A NONLINEAR IDEAL SYSTEM 250; 3.5.
520 _aThis book allows the reader to effectively design, simulate and optimize adsorptive and chromatographic separations for industrial applications. To achieve this, a unified approach is presented, which develops the ideal and intermediate equations necessary, while simultaneously offering hands-on case studies employing the rigorous simulation packages Aspen Adsorption and Aspen Chromatography. The first part of the book deals with design strategies, detailed design considerations and the assumptions, which the models are allowed to make and covers shortcut design methods as well as mathematical tools to determine optimal operating conditions. These insights are used in Chapter 4 & 5 to estimate and optimize performance parameters, such as purity, recovery, etc. as well as the regression of these parameters.
650 0 _aAdsorption
_xSimulation methods.
_95613
650 0 _aChromatographic analysis
_xSimulation methods.
_95614
650 0 _aSeparation (Technology)
_93862
650 0 _aChemistry, Analytic.
_95615
650 7 _aSCIENCE
_xChemistry
_xPhysical & Theoretical.
_2bisacsh
_95616
650 7 _aChemistry, Analytic.
_2fast
_0(OCoLC)fst00853459
_95615
650 7 _aSeparation (Technology)
_2fast
_0(OCoLC)fst01112723
_93862
655 4 _aElectronic books.
_93294
700 1 _aLiu, Y. A.
_q(Yih An),
_eauthor.
_95617
700 1 _aYu, Yueying,
_eauthor.
_95618
856 4 0 _uhttps://doi.org/10.1002/9783527815029
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c68503
_d68503