000 06041cam a2200649Ii 4500
001 on1023575365
003 OCoLC
005 20220711203243.0
006 m o d
007 cr cnu---unuuu
008 180219s2018 enk ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dDG1
_dN$T
_dEBLCP
_dOCLCF
_dRECBK
_dMERER
_dOCLCQ
_dUAB
_dOCLCQ
_dUPM
_dYDX
_dOCLCQ
_dDEBBG
_dU3W
019 _a1023779067
020 _a9781119510512
_q(electronic bk.)
020 _a1119510511
_q(electronic bk.)
020 _a9781119426660
_q(electronic bk.)
020 _a1119426669
_q(electronic bk.)
020 _z9781786300195
_q(print)
020 _z1786300192
029 1 _aAU@
_b000061924288
029 1 _aCHVBK
_b516428195
029 1 _aCHNEW
_b001003144
035 _a(OCoLC)1023575365
_z(OCoLC)1023779067
050 4 _aTA418.9.C6
072 7 _aTEC
_x009000
_2bisacsh
072 7 _aTEC
_x035000
_2bisacsh
082 0 4 _a620.1/18
_223
049 _aMAIN
100 1 _aGodin, Nathalie,
_eauthor.
_95835
245 1 0 _aAcoustic emission and durability of composite materials /
_cNathalie Godin, Pascal Reynaud, Gilbert Fantozzi.
264 1 _aLondon, UK :
_bISTE, Ltd. ;
_aHoboken, NJ :
_bWiley,
_c2018.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aDurability and ageing of organic composite materials set ;
_vvolume 3
588 0 _aOnline resource; title from PDF title page (EBSCO, viewed February 21, 2018).
504 _aIncludes bibliographical references and index.
505 0 _aCover; Half-Title Page; Title Page; Copyright Page; Contents; Introduction; 1. Acoustic Emission: Definition and Overview; 1.1. Overview; 1.2. Acoustic waves; 1.2.1. Infinite medium: volume waves; 1.2.2. Semi-infinite medium: surface waves; 1.2.3. Guided waves; 1.2.4. Anisotropic medium and wave attenuation; 1.3. The sensors and acquisition system; 1.4. Location of sources; 1.5. The extracted descriptors from the AE signal; 1.5.1. Time domain descriptors; 1.5.2. Frequency domain descriptors; 1.5.3. TimeĆ¢#x80;#x93;frequency analysis; 1.6. The different analyses of AE data.
505 8 _a1.6.1. Conventional analysis: qualitative analysis1.6.2. Multivariable statistical analysis: application of pattern recognition techniques; 1.7. Added value of quantitative acoustic emission; 2. Identification of the Acoustic Signature of Damage Mechanisms; 2.1. Selection of signals for analysis; 2.2. Acoustic signature of fiber rupture: model materials; 2.2.1. Characterization of the fiber at the scale of the bundle; 2.2.2. At the microcomposite scale; 2.2.3. At the minicomposite scale.
505 8 _a2.3. Discrimination using temporal descriptors of damage mechanisms in composites: single-descriptor analysis2.4. Identification of the acoustic signature of composite damage mechanisms from a frequency descriptor; 2.5. Identification of the acoustic signature of composite damage mechanisms using a time/frequency analysis; 2.6. Modal acoustic emission; 2.7. Unsupervised multivariable statistical analysis; 2.7.1. Damage identification for organic matrix composites; 2.7.2. Static fatigue damage sequence identification for a ceramic matrix composite.
505 8 _a2.7.3. Identification of the cyclic fatigue damage sequence for a ceramic matrix composite2.7.4. Validation of cluster labeling; 2.8. Supervised multivariable statistical analysis; 2.8.1. Library created from data based on model materials; 2.8.2. Library created from structured data by unsupervised classification; 2.9. The limits of multivariable statistical analysis based on pattern recognition techniques; 2.9.1. Performance of algorithms; 2.9.2. Influence of the acquisition conditions and the geometry of the samples; 2.10. Contribution of modeling: towards quantitative acoustic emission.
505 8 _a3. Lifetime Estimation3.1. Prognostic models: physical or data-oriented models; 3.2. Generalities on power laws: link with seismology; 3.3. Acoustic energy; 3.3.1. Definition of acoustic energy; 3.3.2. Taking into account coupling and definition of equivalent energy; 3.4. Identification of critical times or characteristic times in long-term tests: towards lifetime prediction; 3.4.1. The RAE emission coefficient; 3.4.2. Optimal circle contribution: highlighting the critical region; 3.4.3. The attenuation coefficient B; 3.4.4. The RLU coefficient for cyclic fatigue tests.
520 _aIn this book, two kinds of analysis based on acoustic emission recorded during mechanical tests are investigated. In the first, individual, analysis, acoustic signature of each damage mechanism is characterized. So with a clustering method, ae signals that have similar shapes or similar features can be group together into a cluster. Afterwards, each cluster can be linked with a main damage. The second analysis is based on a global ae analysis, on the investigation of liberated energy, with a view to identify a critical point. So beyond this characteristic point, the criticality can be modeled with a power-law in order to evaluate time to failure.
650 0 _aComposite materials
_xMechanical properties.
_95836
650 7 _aTECHNOLOGY & ENGINEERING
_xEngineering (General)
_2bisacsh
_94639
650 7 _aTECHNOLOGY & ENGINEERING
_xReference.
_2bisacsh
_95837
650 7 _aComposite materials
_xMechanical properties.
_2fast
_0(OCoLC)fst00871717
_95836
655 4 _aElectronic books.
_93294
700 1 _aReynaud, Pascal,
_eauthor.
_95838
700 1 _aFantozzi, G.,
_eauthor.
_95839
776 0 8 _iPrint version:
_aGodin, Nathalie.
_tAcoustic emission and durability of composite materials.
_dLondon, UK : ISTE, Ltd. ; Hoboken, NJ : Wiley, 2018
_z1786300192
_z9781786300195
_w(OCoLC)958479929
830 0 _aMaterials science series (London, England).
_pDurability and ageing of organic composite materials set ;
_vv. 3.
_95840
856 4 0 _uhttps://doi.org/10.1002/9781119426660
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c68544
_d68544