000 06333cam a2200745Ii 4500
001 on1020172380
003 OCoLC
005 20220711203254.0
006 m o d
007 cr cnu|||unuuu
008 180123s2018 gw ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dEBLCP
_dYDX
_dDG1
_dMERER
_dOCLCF
_dCNCGM
_dOCLCQ
_dUAB
_dOCLCQ
_dUPM
_dOCLCQ
_dDEBBG
_dGBVCP
_dOCLCO
_dOCLCQ
_dWYU
_dOCLCA
019 _a1020427000
_a1020686348
020 _a9783527696796
_q(electronic bk.)
020 _a3527696792
_q(electronic bk.)
020 _a9783527696789
_q(electronic bk. ;
_qoBook)
020 _a3527696784
_q(electronic bk. ;
_qoBook)
020 _z9783527340385
020 _z3527340386
029 1 _aCHNEW
_b001003079
029 1 _aCHVBK
_b516427156
029 1 _aGBVCP
_b1027306853
035 _a(OCoLC)1020172380
_z(OCoLC)1020427000
_z(OCoLC)1020686348
050 4 _aTJ853.4.M53
072 7 _aTEC
_x009000
_2bisacsh
072 7 _aTEC
_x035000
_2bisacsh
082 0 4 _a620.1/06
_223
049 _aMAIN
245 0 0 _aOpen-space microfluidics :
_bconcepts, implementations, applications /
_cedited by E. Delamarche and G.V. Kaigala.
264 1 _aWeinheim, Germany :
_bWiley-VCH,
_c[2018]
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
520 _aSummarizing the latest trends and the current state of this research field, this up-to-date book discusses in detail techniques to perform localized alterations on surfaces with great flexibility, including microfluidic probes, multifunctional nanopipettes and various surface patterning techniques, such as dip pen nanolithography. These techniques are also put in perspective in terms of applications and how they can be transformative of numerous (bio)chemical processes involving surfaces. The editors are from IBM Zurich, the pioneers and pacesetters in the field at the forefront of research in this new and rapidly expanding area.
588 0 _aVendor-supplied metadata.
505 0 _aIntro; Title Page; Copyright; Table of Contents; Foreword; Preface; Part I: Hydrodynamic Flow Confinement (HFC); Chapter 1: Hydrodynamic Flow Confinement Using a Microfluidic Probe; 1.1 Introduction; 1.2 HFC Principle; 1.3 MFP Heads; 1.4 Vertical MFP; 1.5 Advanced MFP Heads and Holders; 1.6 Surface Processing Using an MFP; 1.7 MFP Components; 1.8 Outlook; Acknowledgments; References; Chapter 2: Hierarchical Hydrodynamic Flow Confinement (hHFC) and Recirculation for Performing Microscale Chemistry on Surfaces; 2.1 Introduction; 2.2 Hierarchical HFC; 2.3 Recirculation; 2.4 Microscale Deposition.
505 8 _aAcknowledgmentsReferences; Chapter 3: Design of Hydrodynamically Confined Microflow Devices with Numerical Modeling: Controlling Flow Envelope, Pressure, and Shear Stress; 3.1 Introduction; 3.2 Theory; 3.3 Device and Experimental Methods for CFD Validation; 3.4 Numerical Modeling of HCM devices; 3.5 Envelope Size and Pressure Drop Across HCMs; 3.6 Hydrodynamic Loads Generated by HCM Devices; 3.7 Concluding Remarks; References; Chapter 4: Hele-Shaw Flow Theory in the Context of Open Microfluidics: From Dipoles to Quadrupoles; 4.1 Introduction; 4.2 Fundamentals of Hele-Shaw Flows.
505 8 _a4.3 Applications to Microfluidic Dipoles and Quadrupoles4.4 Diffusion in Hele-Shaw Flows; 4.5 Conclusion; References; Chapter 5: Implementation and Applications of Microfluidic Quadrupoles; 5.1 Introduction; 5.2 Principles and Configurations of MQs; 5.3 Implementation of MQs; 5.4 MQ Analysis and Characterization; 5.5 Application of MQs in Biology and Life Sciences; 5.6 Summary and Outlook; References; Chapter 6: Hydrodynamic Flow Confinement-Assisted Immunohistochemistry from Micrometer to Millimeter Scale; 6.1 Immunohistochemical Analysis of Tissue Sections.
505 8 _a6.2 Probe Heads for Multiscale Surface Interactions6.3 Immunohistochemistry with Microfluidic Probes; 6.4 Micro-IHC on Human Tissue Sections; 6.5 Millimeter-Scale Immunohistochemistry; 6.6 Outlook; Acknowledgments; References; Chapter 7: Local Nucleic Acid Analysis of Adherent Cells; 7.1 Introduction; 7.2 Methods; 7.3 Results; 7.4 Discussion; 7.5 Concluding Remarks; Acknowledgments; References; Chapter 8: Microfluidic Probe for Neural Organotypic Brain Tissue and Cell Perfusion; 8.1 Introduction; 8.2 Microperfusion of Organotypic Brain Slices Using the Microfluidic Probe.
505 8 _a8.3 Microperfusion of Live Dissociated Neural Cell Cultures Using the Microfluidic Probe8.4 Conclusion; Acknowledgments; References; Chapter 9: The Multifunctional Pipette; 9.1 Introduction; 9.2 Open Volume Probes; 9.3 Detailed View on the Multifunctional Pipette; 9.4 Integrated Functions; 9.5 Functional Extensions and Applications; 9.6 Future Technology; Acknowledgments; References; Chapter 10: Single-Cell Analysis with the BioPen; 10.1 Introduction; 10.2 The Single-Cell Challenge; 10.3 Superfusion Techniques; 10.4 The BioPen; 10.5 Application Areas; 10.6 Future Technology; Acknowledgments.
650 0 _aMicrofluidics.
_94240
650 0 _aMaterials science.
_95803
650 0 _aThin films
_xSurfaces.
_96005
650 7 _aTECHNOLOGY & ENGINEERING
_xEngineering (General)
_2bisacsh
_94639
650 7 _aTECHNOLOGY & ENGINEERING
_xReference.
_2bisacsh
_96006
650 7 _aMaterials science.
_2fast
_0(OCoLC)fst01011957
_95803
650 7 _aMicrofluidics.
_2fast
_0(OCoLC)fst01736696
_94240
650 7 _aThin films
_xSurfaces.
_2fast
_0(OCoLC)fst01150040
_96005
650 7 _aMikrofluidik
_2gnd
_96007
650 7 _aHydrodynamik
_2gnd
_96008
650 7 _aOberflächenanalyse
_2gnd
_96009
650 7 _aOberflächenstruktur
_2gnd
_96010
650 7 _aNanolithografie
_2gnd
_96011
650 7 _aRasterelektrochemisches Mikroskop
_2gnd
_96012
650 7 _aRastersondenmikroskopie
_2gnd
_96013
655 4 _aElectronic books.
_93294
700 1 _aDelamarche, Emmanuel,
_eeditor.
_96014
700 1 _aKaigala, Govind V.,
_eeditor.
_96015
776 0 8 _iPrint version:
_tOpen-space microfluidics.
_dWeinheim, Germany : Wiley-VCH, [2018]
_z3527340386
_z9783527340385
_w(OCoLC)994903967
856 4 0 _uhttps://doi.org/10.1002/9783527696789
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c68577
_d68577