000 08091cam a2200589Ia 4500
001 on1226594428
003 OCoLC
005 20220711203631.0
006 m o d
007 cr un|---aucuu
008 201212s2020 enk ob 001 0 eng d
040 _aEBLCP
_beng
_cEBLCP
_dYDX
_dDG1
_dOCLCO
_dOCLCF
_dNLW
019 _a1225977020
020 _a9781119801849
_q(electronic bk. : oBook)
020 _a1119801842
_q(electronic bk. : oBook)
020 _a9781119805519
020 _a1119805511
020 _z1786306395
020 _z9781786306395
029 1 _aAU@
_b000068653655
035 _a(OCoLC)1226594428
_z(OCoLC)1225977020
050 4 _aGC1085
082 0 4 _a577.7/27
_223
049 _aMAIN
245 0 0 _aRemote detection and maritime pollution :
_bchemical spill studies /
_cedited by Stéphane Le Floch, Frédéric Muttin.
260 _aLondon :
_bISTE, Ltd. ;
_aHoboken, NJ :
_bWiley,
_c2020.
300 _a1 online resource (207 p.)
504 _aIncludes bibliographical references and index.
500 _aDescription based upon print version of record.
505 0 _aForewords xi Part 1. Remote Sensing Means 1 Chapter 1. POLLUPROOF Project 3; Sophie CHATAING, Sébastien ANGELLIAUME, Pierre-Yves FOUCHER, Eldon PUCKRIN and Stéphane LE FLOCH 1.1. Introduction 3 1.2. POLLUPROOF project 4 1.2.1. Objectives 4 1.2.2. Hazardous and noxious substances 5 1.3. Experimental approach 7 1.3.1. Calibration of optical sensors 7 1.3.2. Evaluation of radar, optical and hyperspectral sensors at sea 9 1.4. Conclusion 14 1.5. References 14 Chapter 2. Multifrequency Radar Imagery and Characterization of Hazardous and Noxious Substances at Sea 17; Sébastien ANGELLIAUME, Brent MINCHEW, Sophie CHATAING, Philippe MARTINEAU and Véronique MIEGEBIELLE 2.1. Introduction 17 2.2. Experimentation at sea 19 2.2.1. Radar imagery 19 2.2.2. Chemical products 20 2.2.3.
505 0 _aPlanning of measurements 22 2.3. Methodology 24 2.3.1. Scattering from ocean surface 24 2.3.2. Detection and relative quantification 26 2.3.3. Oil/water mixing index 27 2.4. Results and discussion 29 2.4.1. Observation of hazardous and noxious substances at sea 29 2.4.2. Detection and quantification of impact on the ocean surface 31 2.4.3. Characterization 34 2.5. Conclusion 36 2.6. Acknowledgments 37 2.7. References 37 Chapter 3. Remote Sensing of HNS using Longwave Infrared Hyperspectral Imaging 41; Eldon PUCKRIN, Dennis DURO, Guillaume GAGNE, Anne-Pier BERNIER, Louis ARMSTRONG and Sophie CHATAING 3.1. Introduction 41 3.2. LWIR hyperspectral remote sensing capability 42 3.2.1. Basin measurements at CEDRE 43 3.2.2. Sea measurements 44 3.3. Detection and identification of HNS using LWIR hyperspectral sensing 46 3.3.1.
505 0 _aDetection phenomenology 46 3.3.2. Detection algorithm 48 3.3.3. Basin measurements at CEDRE 48 3.3.4. Sea measurements 51 3.4. Conclusion 53 3.5. References 53 Part 2. Remote Sensing to Support Marine Surveillance Services 55 Chapter 4. Customs Expertise in Remote Sensing 57; Laurent BUIGNET 4.1. Introduction 57 4.2. The aircraft 57 4.3. The equipment 59 4.4. Airborne remote sensing processing 60 4.5. Side-looking airborne radar (SLAR) processing 60 4.6. Infrared and ultraviolet line scanner 61 4.7. Standard detection and investigation 61 4.8. The future, a new multi-mission aircraft 62 Chapter 5. Remote Sensing as Evidence in Court 63; Yann RABUTEAU 5.1. Introduction 63 5.2. Legal framework of the offence and the evidence 65 5.2.1. What the texts say 65 5.2.2.
505 0 _aWhat legal precedents have been set? 67 5.3. Remote sensing: questions and advances 68 5.3.1. Does the verdict of the Traquair case exclude recourse to remote sensing? 68 5.3.2. What answers and advances have been observed? 68 5.4. Conclusion 69 5.5. References 70 Chapter 6. Long-Term Surveillance and Monitoring of Natural Events in Coastal Waters 71; Francis GOHIN 6.1. Introduction 71 6.2. Satellite products for long-term surveillance 72 6.3. Some specific events of natural origin in coastal waters 74 6.4. Conclusion 76 6.5. References 76 Part 3. Remote Sensing to Support the Response Strategy 77 Chapter 7. VIGISAT Ground Receiving Station and EMSA CleanSeaNet Services 79; Guillaume HAJDUCH 7.1. Introduction 79 7.2. VIGISAT ground receiving station and detection of pollution in near-real time 80 7.3.
505 0 _aPolluter identification with AIS data flows and drift modeling 83 7.4. References 86 Chapter 8. System-to-system Interface Between the EMSA CleanSeaNet Service and OSERIT 87; Sébastien LEGRAND and Ronny SCHALLIER 8.1. Introduction 87 8.2. The EMSA CleanSeaNet service 91 8.3. OSERIT 94 8.3.1. The OSERIT Oil Spill Model 94 8.3.2. OSERIT visualization tool 96 8.3.3. OSERIT domain 98 8.3.4. OSERIT met-ocean forcing 98 8.3.5. OSERIT oil database 99 8.4. A system-to-system interface between CleanSeaNet and OSERIT 101 8.4.1. Scenario 1: automatically triggered forecast 102 8.4.2. Scenario 2: automatically triggered backtrack 103 8.4.3. Scenario 3: manually triggered forecast 103 8.4.4. Scenario 4: manually triggered backtrack 104 8.5. The Flinterstar incident 105 8.5.1. The incident 105 8.5.2.
505 0 _aMonitoring and surveillance of the oil and its fate/behavior 107 8.6. Conclusion 112 8.7. Acknowledgments 112 8.8. References 113 Chapter 9. Optimizing the Use of Aerial Surveillance Assets in Oil Spill Response Operations 115; Charles Henri THOUAILLE 9.1. Introduction 115 9.2. Assumptions and working hypotheses 117 9.3. Experimental protocol: testing the primary hypothesis 118 9.3.1. Technical specifications 118 9.3.2. Operational requirements 119 9.3.3. Choice of SUAS 120 9.3.4. Systematic testing of assumptions 121 9.4. Experimental protocol: underlying assumptions and testing of secondary hypothesis 125 9.5. The case for using SUAS as a force multiplier in spill response coordination 128 9.6. Appendix 1 130 9.7. Appendix 2 131 9.8. References 132 Part 4. Remote Sensing for Exploration 133 Chapter 10.
505 0 _aPotential of Imaging UAVs for Coastal Monitoring 135; Marion JAUD, Christophe DELACOURT, Nicolas LE DANTEC, Jérôme AMMANN, Philippe GRANDJEAN, Pascal ALLEMAND and Lucie COCQUEMPOT 10.1. Introduction 135 10.2. Constraints on the survey 136 10.3. Examples of UAV platforms 137 10.4. Survey protocol 138 10.5. Data processing 139 10.6. Examples of applications 140 10.7. Conclusion 142 10.8. References 142 Chapter 11. Use of Remote Sensing Techniques to Survey, Detect and Interpret Hydrocarbon Seeps and Spills for Exploration and Environment 143; Véronique MIEGEBIELLE 11.1. Introduction 143 11.2. Methodology 144 11.3. Offshore facilities monitoring/mining field 145 11.4. Emergency 146 11.5. Perspectives 148 11.6. Conclusion 148 11.7. References 149 Chapter 12.
505 0 _aNatural Escapes of Oil in Sedimentary Basins: Space-borne Recognition and Pairing with Seafloor and Sub-seafloor Features 151; Romain JATIAULT 12.1. Introduction 151 12.2. Datasets and methods 153 12.2.1. Data 153 12.2.2. Methods 155 12.3. Results 158 12.3.1. Oil slick mapping 158 12.3.2. Oil migration pathways and horizontal deflection 159 12.4. Conclusion 162 12.5. References 162 Conclusion 167; Stéphane LE FLOCH and Frédéric MUTTIN List of Authors 177 Index 181
590 _bWiley Frontlist Obook All English 2020
650 0 _aMarine pollution.
_99483
650 0 _aMarine pollution
_xRemote sensing.
_99484
650 0 _aMarine ecology.
_99485
650 7 _aMarine ecology.
_2fast
_0(OCoLC)fst01009513
_99485
650 7 _aMarine pollution.
_2fast
_0(OCoLC)fst01009826
_99483
650 7 _aMarine pollution
_xRemote sensing.
_2fast
_0(OCoLC)fst01009852
_99484
655 4 _aElectronic books.
_93294
700 1 _aLe Floch, Stephane.
_99486
700 1 _aMuttin, Frédéric.
_99487
776 0 8 _iPrint version:
_aLe Floch, Stephane
_tRemote Detection and Maritime Pollution : Chemical Spill Studies
_dNewark : John Wiley & Sons, Incorporated,c2021
_z9781786306395
856 4 0 _uhttps://doi.org/10.1002/9781119801849
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c69413
_d69413