000 08098nam a2200937 i 4500
001 5237622
003 IEEE
005 20220712205616.0
006 m o d
007 cr |n|||||||||
008 070425t20152007njua ob 001 0 eng d
020 _a9780470106280
_qelectronic
020 _z9780471488897
_qpaper
020 _z047010628X
_qelectronic
024 7 _a10.1002/047010628X
_2doi
035 _a(CaBNVSL)mat05237622
035 _a(IDAMS)0b00006481095a22
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK7871.6
_b.H37 2007eb
082 0 4 _a621.30285/631
_222
100 1 _aHaupt, Randy L.
_eauthor.
_926477
245 1 0 _aGenetic algorithms in electromagnetics /
_cRandy L. Haupt, Douglas H. Werner.
264 1 _aHoboken, New Jersey :
_bIEEE Press :
_cc2007.
300 _a1 PDF (xiii, 301 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references (p. 277-297) and index.
505 0 _aPreface. -- Acknowledgments. -- 1. Introduction to Optimization in Electromagnetics. -- 1.1 Optimizing a Function of One Variable. -- 1.1.1 Exhaustive Search. -- 1.1.2 Random Search. -- 1.1.3 Golden Search. -- 1.1.4 Newton's Method. -- 1.1.5 Quadratic Interpolation. -- 1.2 Optimizing a Function of Multiple Variables. -- 1.2.1 Random Search. -- 1.2.2 Line Search. -- 1.2.3 Nelder-Mead Downhill Simplex Algorithm. -- 1.3 Comparing Local Numerical Optimization Algorithms. -- 1.4 Simulated Annealing. -- 1.5 Genetic Algorithm. -- 2. Anatomy of a Genetic Algorithm. -- 2.1 Creating an Initial Population. -- 2.2 Evaluating Fitness. -- 2.3 Natural Selection. -- 2.4 Mate Selection. -- 2.4.1 Roulette Wheel Selection. -- 2.4.2 Tournament Selection. -- 2.5 Generating Offspring. -- 2.6 Mutation. -- 2.7 Terminating the Run. -- 3. Step-by-Step Examples. -- 3.1 Placing Nulls. -- 3.2 Thinned Arrays. -- 4. Optimizing Antenna Arrays. -- 4.1 Optimizing Array Amplitude Tapers. -- 4.2 Optimizing Array Phase Tapers. -- 4.2.1 Optimum Quantized Low-Sidelobe Phase Tapers. -- 4.2.2 Phase-Only Array Synthesis Using Adaptive GAs. -- 4.3 Optimizing Arrays with Complex Weighting. -- 4.3.1 Shaped-Beam Synthesis. -- 4.3.2 Creating a Plane Wave in the Near Field. -- 4.4 Optimizing Array Element Spacing. -- 4.4.1 Thinned Arrays. -- 4.4.2 Interleaved Thinned Linear Arrays. -- 4.4.3 Array Element Perturbation. -- 4.4.4 Aperiodic Fractile Arrays. -- 4.4.5 Fractal-Random and Polyfractal Arrays. -- 4.4.6 Aperiodic Refl ectarrays. -- 4.5 Optimizing Conformal Arrays. -- 4.6 Optimizing Reconfi gurable Apertures. -- 4.6.1 Planar Reconfi gurable Cylindrical Wire Antenna Design. -- 4.6.2 Planar Reconfi gurable Ribbon Antenna Design. -- 4.6.3 Design of Volumetric Reconfi gurable Antennas. -- 4.6.4 Simulation Results--Planar Reconfi gurable Cylindrical Wire Antenna. -- 4.6.5 Simulation Results--Volumetric Reconfi gurable Cylindrical Wire Antenna. -- 4.6.6 Simulation Results--Planar Reconfi gurable Ribbon Antenna. -- 5. Smart Antennas Using a GA.
505 8 _a5.1 Amplitude and Phase Adaptive Nulling. -- 5.2 Phase-Only Adaptive Nulling. -- 5.3 Adaptive Reflector. -- 5.4 Adaptive Crossed Dipoles. -- 6. Genetic Algorithm Optimization of Wire Antennas. -- 6.1 Introduction. -- 6.2 GA Design of Electrically Loaded Wire Antennas. -- 6.3 GA Design of Three-Dimensional Crooked-Wire Antennas. -- 6.4 GA Design of Planar Crooked-Wire and Meander-Line Antennas. -- 6.5 GA Design of Yagida Antennas. -- 7. Optimization of Aperture Antennas. -- 7.1 Refl ector Antennas. -- 7.2 Horn Antennas. -- 7.3 Microstrip Antennas. -- 8. Optimization of Scattering. -- 8.1 Scattering from an Array of Strips. -- 8.2 Scattering from Frequency-Selective Surfaces. -- 8.2.1 Optimization of FSS Filters. -- 8.2.2 Optimization of Reconfi gurable FSSs. -- 8.2.3 Optimization of EBGs. -- 8.3 Scattering from Absorbers. -- 8.3.1 Conical or Wedge Absorber Optimization. -- 8.3.2 Multilayer Dielectric Broadband Absorber Optimization. -- 8.3.3 Ultrathin Narrowband Absorber Optimization. -- 9. GA Extensions. -- 9.1 Selecting Population Size and Mutation Rate. -- 9.2 Particle Swarm Optimization (PSO). -- 9.3 Multiple-Objective Optimization. -- 9.3.1 Introduction. -- 9.3.2 Strength Pareto Evolutionary Algorithm Strength Value Calculation. -- 9.3.3 Strength Pareto Evolutionary Algorithm Pareto Set Clustering. -- 9.3.4 Strength Pareto Evolutionary Algorithm Implementation. -- 9.3.5 SPEA-Optimized Planar Arrays. -- 9.3.6 SPEA-Optimized Planar Polyfractal Arrays. -- Appendix: MATLAB Code. -- Bibliography. -- Index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aA thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: . Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands. Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems. Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles. Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole". How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas. Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials. Ideas on operator and parameter selection for a GA. Detailed explanations of particle swarm optimization and multiple objective optimization. An appendix of MATLAB code for experimentation.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
588 _aDescription based on PDF viewed 12/18/2015.
650 0 _aAntenna arrays
_xDesign.
_926478
650 0 _aElectromagnetism
_xMathematical models.
_96379
650 0 _aGenetic algorithms.
_93938
655 0 _aElectronic books.
_93294
695 _aAdaptive arrays
695 _aAntenna arrays
695 _aAntenna radiation patterns
695 _aAperture antennas
695 _aArrays
695 _aBibliographies
695 _aBiological cells
695 _aBroadband antennas
695 _aComputers
695 _aConvergence
695 _aCost function
695 _aElectromagnetics
695 _aEncoding
695 _aEvolution (biology)
695 _aGallium
695 _aGenerators
695 _aGenetic algorithms
695 _aGenetics
695 _aHorn antennas
695 _aIndexes
695 _aInterference
695 _aLinear antenna arrays
695 _aLoaded antennas
695 _aMATLAB
695 _aMoment methods
695 _aMonitoring
695 _aOptimization
695 _aParticle swarm optimization
695 _aPhase shifters
695 _aPhased arrays
695 _aPolynomials
695 _aPower generation
695 _aScattering
695 _aSignal processing algorithms
695 _aWheels
695 _aWire
700 1 _aWerner, Douglas H.,
_d1960-
_926479
710 2 _aIEEE Xplore (Online service),
_edistributor.
_926480
776 0 8 _iPrint version:
_z9780471488897
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237622
942 _cEBK
999 _c73785
_d73785