000 | 06054nam a2200817 i 4500 | ||
---|---|---|---|
001 | 6774608 | ||
003 | IEEE | ||
005 | 20220712205858.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 151222s2014 nju ob 001 eng d | ||
010 | _z 2013029835 (print) | ||
020 |
_a9781118821183 _qelectronic |
||
020 |
_z9781118168127 _qprint |
||
020 |
_z9781118820940 _qelectronic |
||
020 |
_z1118821181 _qelectronic |
||
020 |
_z9781118821060 _qePub |
||
020 |
_z1118821068 _qePub |
||
024 | 7 |
_a10.1002/9781118821183 _2doi |
|
035 | _a(CaBNVSL)mat06774608 | ||
035 | _a(IDAMS)0b000064820ab95e | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 |
_aQC717. _bL38 2014eb |
|
100 | 1 |
_aLattarulo, Francesco, _eauthor. _928353 |
|
245 | 1 | 0 |
_aFilamentary ion flow : _btheory and experiments / _cFrancesco Lattarulo, Vitantonio Amoruso. |
264 | 1 |
_aHoboken, New Jersey : _bJohn Wiley & Sons, Inc., _c[2014] |
|
264 | 2 |
_a[Piscataqay, New Jersey] : _bIEEE Xplore, _c[2014] |
|
300 | _a1 PDF (xxix, 204 pages). | ||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aFilamentary Ion Flow: Theory and Experiments; Contents; Preface; Acknowledgements; Introduction; Principal Symbols; 1 Fundamentals of Electrical Discharges; 1.1 Introduction; 1.2 Ionization Processes in Gases; 1.2.1 Ionization by Electron Impact; 1.2.2 Townsend First Ionization Coefficient; 1.2.3 Electron Avalanches; 1.2.4 Photoionization; 1.2.5 Other Ionization Processes; 1.3 Deionization Processes in Gases; 1.3.1 Deionization by Recombination; 1.3.2 Deionization by Attachment; 1.4 Ionization and Attachment Coefficients; 1.5 Electrical Breakdown of Gases. | |
505 | 8 | _a1.5.1 Breakdown in Steady Uniform Field: Townsend's Breakdown Mechanism1.5.2 Paschen's Law; 1.6 Streamer Mechanism; 1.7 Breakdown in Nonuniform DC Field; 1.8 Other Streamer Criteria; 1.9 Corona Discharge in Air; 1.9.1 DC Corona Modes; 1.9.2 Negative Corona Modes; 1.9.3 Positive Corona Modes; 1.10 AC Corona; 1.11 Kaptzov's Hypothesis; 2 Ion Flow Models -- A Review; 2.1 Introduction; 2.2 The Unipolar Space-Charge Flow Problem; 2.2.1 General Formulation; 2.2.2 Iterative Procedure; 2.2.3 The Unipolar Charge-Drift Formula; 2.3 Deutsch's Hypotheses (DH); 2.4 Some Unipolar Ion-Flow Field Problems. | |
505 | 8 | _a2.4.1 Analytical Methods2.4.2 Numerical Methods; 2.5 Special Models; 2.5.1 Drift of Charged Spherical Clouds; 2.5.2 Graphical Approach; 2.6 More on DH and Concluding Remarks; Appendix 2.A: Warburg's Law (WL); Appendix 2.B: Bipolar Ionized Field; 3 Introductory Survey on Fluid Dynamics; 3.1 Introduction; 3.2 Continuum Motion of a Fluid; 3.3 Fluid Particle; 3.4 Field Quantities; 3.5 Conservation Laws in Differential Form; 3.5.1 Generalization; 3.5.2 Mass Conservation; 3.5.3 Momentum Conservation; 3.5.4 Total Kinetic Energy Conservation; 3.6 Stokesian and Newtonian Fluids. | |
505 | 8 | _a3.7 The Navier-Stokes Equation3.8 Deterministic Formulation for et; 3.9 Incompressible (Isochoric) Flow; 3.9.1 Mass Conservation; 3.9.2 Subsonic Flow; 3.9.3 Momentum Conservation; 3.9.4 Total Kinetic Energy Conservation; 3.10 Incompressible and Irrotational Flows; 3.11 Describing the Velocity Field; 3.11.1 Decomposition; 3.11.2 The v-Field of Incompressible and Irrotational Flows; 3.11.3 Some Practical Remarks and Anticipations; 3.12 Variational Interpretation in Short; 3.12.1 Bernoulli's Equation for Incompressible and Irrotational Flows; 3.12.2 Lagrange's Function; Appendix 3.A. | |
505 | 8 | _a4 Electrohydrodynamics of Unipolar Ion Flows4.1 Introduction; 4.2 Reduced Mass-Charge; 4.3 Unified Governing Laws; 4.3.1 Mass-Charge Conservation Law; 4.3.2 Fluid Reaction to Excitation Electromagnetic Fields; 4.3.3 Invalid Application of Gauss's Law: A Pertaining Example; 4.3.4 Laplacian Field and Boundary Conditions; 4.3.5 Vanishing Body Force of Electrical Nature; 4.3.6 Unified Momentum and Energy Conservation Law; 4.3.7 Mobility in the Context of a Coupled Model; 4.3.8 Some Remarks on the Deutsch Hypothesis (DH); 4.4 Discontinuous Ion-Flow Parameters; 4.4.1 Multichanneled Structure. | |
506 | 1 | _aRestricted to subscribers or individual electronic text purchasers. | |
520 | _aPresents all-new laboratory-tested theory for calculating more accurate ionized electric fields to aid in designing high-voltage devices and its components Understanding and accurately calculating corona originated electric fields are important issues for scientists who are involved in electromagnetic and electrostatic studies. High-voltage dc lines and equipment, in particular, can generate ion flows that can give rise to environmental inconveniences. Filamentary Ion Flow: Theory and Experiments provides interdisciplinary theoretical arguments to attain a final. | ||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web | ||
588 | _aDescription based on PDF viewed 12/22/2015. | ||
650 | 0 |
_aIon flow dynamics. _928354 |
|
650 | 0 |
_aElectrostatics. _92422 |
|
655 | 0 |
_aElectronic books. _93294 |
|
695 | _aCathodes | ||
695 | _aCorona | ||
695 | _aDischarges (electric) | ||
695 | _aDynamics | ||
695 | _aElectrodes | ||
695 | _aElectrohydrodynamics | ||
695 | _aFilling | ||
695 | _aFluid dynamics | ||
695 | _aFluid flow measurement | ||
695 | _aGases | ||
695 | _aGeometry | ||
695 | _aIonization | ||
695 | _aIons | ||
695 | _aKinetic energy | ||
695 | _aPhotonics | ||
695 | _aProgrammable logic arrays | ||
695 | _aSensitivity | ||
695 | _aTensile stress | ||
695 | _aVectors | ||
700 | 1 |
_aAmoruso, Vitantonio, _d1955-, _eauthor. _928355 |
|
710 | 2 |
_aIEEE Xplore (Online Service), _edistributor. _928356 |
|
710 | 2 |
_aWiley, _epublisher. _928357 |
|
776 | 0 | 8 |
_iPrint version: _z9781118168127 |
856 | 4 | 2 |
_3Abstract with links to resource _uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6774608 |
942 | _cEBK | ||
999 |
_c74339 _d74339 |