000 06054nam a2200817 i 4500
001 6774608
003 IEEE
005 20220712205858.0
006 m o d
007 cr |n|||||||||
008 151222s2014 nju ob 001 eng d
010 _z 2013029835 (print)
020 _a9781118821183
_qelectronic
020 _z9781118168127
_qprint
020 _z9781118820940
_qelectronic
020 _z1118821181
_qelectronic
020 _z9781118821060
_qePub
020 _z1118821068
_qePub
024 7 _a10.1002/9781118821183
_2doi
035 _a(CaBNVSL)mat06774608
035 _a(IDAMS)0b000064820ab95e
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQC717.
_bL38 2014eb
100 1 _aLattarulo, Francesco,
_eauthor.
_928353
245 1 0 _aFilamentary ion flow :
_btheory and experiments /
_cFrancesco Lattarulo, Vitantonio Amoruso.
264 1 _aHoboken, New Jersey :
_bJohn Wiley & Sons, Inc.,
_c[2014]
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2014]
300 _a1 PDF (xxix, 204 pages).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aFilamentary Ion Flow: Theory and Experiments; Contents; Preface; Acknowledgements; Introduction; Principal Symbols; 1 Fundamentals of Electrical Discharges; 1.1 Introduction; 1.2 Ionization Processes in Gases; 1.2.1 Ionization by Electron Impact; 1.2.2 Townsend First Ionization Coefficient; 1.2.3 Electron Avalanches; 1.2.4 Photoionization; 1.2.5 Other Ionization Processes; 1.3 Deionization Processes in Gases; 1.3.1 Deionization by Recombination; 1.3.2 Deionization by Attachment; 1.4 Ionization and Attachment Coefficients; 1.5 Electrical Breakdown of Gases.
505 8 _a1.5.1 Breakdown in Steady Uniform Field: Townsend's Breakdown Mechanism1.5.2 Paschen's Law; 1.6 Streamer Mechanism; 1.7 Breakdown in Nonuniform DC Field; 1.8 Other Streamer Criteria; 1.9 Corona Discharge in Air; 1.9.1 DC Corona Modes; 1.9.2 Negative Corona Modes; 1.9.3 Positive Corona Modes; 1.10 AC Corona; 1.11 Kaptzov's Hypothesis; 2 Ion Flow Models -- A Review; 2.1 Introduction; 2.2 The Unipolar Space-Charge Flow Problem; 2.2.1 General Formulation; 2.2.2 Iterative Procedure; 2.2.3 The Unipolar Charge-Drift Formula; 2.3 Deutsch's Hypotheses (DH); 2.4 Some Unipolar Ion-Flow Field Problems.
505 8 _a2.4.1 Analytical Methods2.4.2 Numerical Methods; 2.5 Special Models; 2.5.1 Drift of Charged Spherical Clouds; 2.5.2 Graphical Approach; 2.6 More on DH and Concluding Remarks; Appendix 2.A: Warburg's Law (WL); Appendix 2.B: Bipolar Ionized Field; 3 Introductory Survey on Fluid Dynamics; 3.1 Introduction; 3.2 Continuum Motion of a Fluid; 3.3 Fluid Particle; 3.4 Field Quantities; 3.5 Conservation Laws in Differential Form; 3.5.1 Generalization; 3.5.2 Mass Conservation; 3.5.3 Momentum Conservation; 3.5.4 Total Kinetic Energy Conservation; 3.6 Stokesian and Newtonian Fluids.
505 8 _a3.7 The Navier-Stokes Equation3.8 Deterministic Formulation for et; 3.9 Incompressible (Isochoric) Flow; 3.9.1 Mass Conservation; 3.9.2 Subsonic Flow; 3.9.3 Momentum Conservation; 3.9.4 Total Kinetic Energy Conservation; 3.10 Incompressible and Irrotational Flows; 3.11 Describing the Velocity Field; 3.11.1 Decomposition; 3.11.2 The v-Field of Incompressible and Irrotational Flows; 3.11.3 Some Practical Remarks and Anticipations; 3.12 Variational Interpretation in Short; 3.12.1 Bernoulli's Equation for Incompressible and Irrotational Flows; 3.12.2 Lagrange's Function; Appendix 3.A.
505 8 _a4 Electrohydrodynamics of Unipolar Ion Flows4.1 Introduction; 4.2 Reduced Mass-Charge; 4.3 Unified Governing Laws; 4.3.1 Mass-Charge Conservation Law; 4.3.2 Fluid Reaction to Excitation Electromagnetic Fields; 4.3.3 Invalid Application of Gauss's Law: A Pertaining Example; 4.3.4 Laplacian Field and Boundary Conditions; 4.3.5 Vanishing Body Force of Electrical Nature; 4.3.6 Unified Momentum and Energy Conservation Law; 4.3.7 Mobility in the Context of a Coupled Model; 4.3.8 Some Remarks on the Deutsch Hypothesis (DH); 4.4 Discontinuous Ion-Flow Parameters; 4.4.1 Multichanneled Structure.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aPresents all-new laboratory-tested theory for calculating more accurate ionized electric fields to aid in designing high-voltage devices and its components Understanding and accurately calculating corona originated electric fields are important issues for scientists who are involved in electromagnetic and electrostatic studies. High-voltage dc lines and equipment, in particular, can generate ion flows that can give rise to environmental inconveniences. Filamentary Ion Flow: Theory and Experiments provides interdisciplinary theoretical arguments to attain a final.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/22/2015.
650 0 _aIon flow dynamics.
_928354
650 0 _aElectrostatics.
_92422
655 0 _aElectronic books.
_93294
695 _aCathodes
695 _aCorona
695 _aDischarges (electric)
695 _aDynamics
695 _aElectrodes
695 _aElectrohydrodynamics
695 _aFilling
695 _aFluid dynamics
695 _aFluid flow measurement
695 _aGases
695 _aGeometry
695 _aIonization
695 _aIons
695 _aKinetic energy
695 _aPhotonics
695 _aProgrammable logic arrays
695 _aSensitivity
695 _aTensile stress
695 _aVectors
700 1 _aAmoruso, Vitantonio,
_d1955-,
_eauthor.
_928355
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_928356
710 2 _aWiley,
_epublisher.
_928357
776 0 8 _iPrint version:
_z9781118168127
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6774608
942 _cEBK
999 _c74339
_d74339