000 07772nam a2200541 i 4500
001 6954636
003 IEEE
005 20220712205907.0
006 m o d
007 cr |n|||||||||
008 151222s2014 nju ob 001 eng d
010 _z 2014017666 (print)
020 _a9781118822401
_qelectronic
020 _z9781118822265
_qcloth
024 7 _a10.1002/9781118822401
_2doi
035 _a(CaBNVSL)mat06954636
035 _a(IDAMS)0b00006482835e73
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTJ217.5
_b.L535 2014eb
082 0 0 _a629.8/9
_223
100 1 _aLi, Han-Xiong,
_eauthor.
_928484
245 1 0 _aSystem design and control integration for advanced manufacturing /
_cHan-Xiong Li, XinJiang Lu.
264 1 _aHoboken, NJ :
_bJohn Wiley & Sons Inc.,
_c[2014]
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2014]
300 _a1 PDF (xiii, 247 pages).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE press series on systems science and engineering
504 _aIncludes bibliographical references.
505 0 _aPREFACE xi -- ACKNOWLEDGMENTS xiii -- I BACKGROUND AND FUNDAMENTALS -- 1 INTRODUCTION 3 -- 1.1 Background and Motivation 3 -- 1.1.1 Robust Design for Static Systems 5 -- 1.1.2 Robust Design for Dynamic Systems 8 -- 1.1.3 Integration of Design and Control 10 -- 1.2 Objectives of the Book 14 -- 1.3 Contribution and Organization of the Book 15 -- 2 OVERVIEW AND CLASSIFICATION 19 -- 2.1 Classification of Uncertainty 19 -- 2.2 Robust Performance Analysis 20 -- 2.2.1 Interval Analysis 20 -- 2.2.2 Fuzzy Analysis 21 -- 2.2.3 Probabilistic Analysis 21 -- 2.3 Robust Design 27 -- 2.3.1 Robust Design for Static Systems 28 -- 2.3.2 Robust Design for Dynamic Systems 37 -- 2.4 Integration of Design and Control 41 -- 2.4.1 Control Structure Design 41 -- 2.4.2 Control Method 42 -- 2.4.3 Optimization Method 43 -- 2.5 Problems and Research Opportunities 43 -- II ROBUST DESIGN FOR STATIC SYSTEMS -- 3 VARIABLE SENSITIVITY BASED ROBUST DESIGN FOR NONLINEAR SYSTEM 47 -- 3.1 Introduction 47 -- 3.2 Design Problem for Nonlinear Systems 48 -- 3.2.1 Problem in Deterministic Design 49 -- 3.2.2 Problem in Probabilistic Design 49 -- 3.3 Concept of Variable Sensitivity 51 -- 3.4 Variable Sensitivity Based Deterministic Robust Design 52 -- 3.4.1 Robust Design for Single Performance Single Variable 52 -- 3.4.2 Robust Design for Multiperformances Multivariables 54 -- 3.4.3 Design Procedure 58 -- 3.5 Variable Sensitivity Based Probabilistic Robust Design 58 -- 3.5.1 Single Performance Function Under Single Variables 59 -- 3.5.2 Single Performance Function Under Multivariables 60 -- 3.5.3 Multiperformance Functions Under Multivariables 61 -- 3.6 Case Study 62 -- 3.6.1 Deterministic Design Cases 62 -- 3.6.2 Probabilistic Design Case 66 -- 3.7 Summary 70 -- 4 MULTI-DOMAIN MODELING-BASED ROBUST DESIGN 71 -- 4.1 Introduction 71 -- 4.2 Multi-Domain Modeling-Based Robust Design Methodology 73 -- 4.2.1 Multi-Domain Modeling Approach 74 -- 4.2.2 Variation Separation-Based Robust Design Method 75 -- 4.2.3 Design Procedure 78.
505 8 _a4.3 Case Study 80 -- 4.3.1 Robust Design of a Belt 80 -- 4.3.2 Robust Design of Hydraulic Press Machine 81 -- 4.4 Summary 86 -- 5 HYBRID MODEL DATA-BASED ROBUST DESIGN UNDER MODEL UNCERTAINTY 87 -- 5.1 Introduction 87 -- 5.2 Design Problem for Partially Unknown Systems 88 -- 5.2.1 Probabilistic Robust Design Problem 88 -- 5.2.2 Deterministic Robust Design Problem 90 -- 5.3 Hybrid Model Data-Based Robust Design Methodology 92 -- 5.3.1 Probabilistic Robust Design 93 -- 5.3.2 Deterministic Robust Design 99 -- 5.4 Case Study 104 -- 5.4.1 Probabilistic Robust Design 104 -- 5.4.2 Deterministic Robust Design 109 -- 5.5 Summary 114 -- III ROBUST DESIGN FOR DYNAMIC SYSTEMS -- 6 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION-A LINEARIZATION APPROACH 119 -- 6.1 Introduction 119 -- 6.2 Dynamic Design Problem Under Parameter Variation 120 -- 6.2.1 Stability Design Problem 120 -- 6.2.2 Dynamic Robust Design Problem 121 -- 6.3 Linearization-Based Robust Eigenvalue Design 122 -- 6.3.1 Stability Design 122 -- 6.3.2 Robust Eigenvalue Design 124 -- 6.3.3 Tolerance Design 127 -- 6.3.4 Design Procedure 128 -- 6.4 Multi-Model-Based Robust Design Method for Stability and Robustness 128 -- 6.4.1 Multi-Model Approach 129 -- 6.4.2 Stability Design 130 -- 6.4.3 Dynamic Robust Design 132 -- 6.4.4 Summary 134 -- 6.5 Case Studies 134 -- 6.5.1 Linearization-Based Robust Eigenvalue Design 134 -- 6.5.2 Multi-Model-Based Robust Design Method 138 -- 6.6 Summary 145 -- 7 ROBUST EIGENVALUE DESIGN UNDER PARAMETER VARIATION-A NONLINEAR APPROACH 147 -- 7.1 Introduction 147 -- 7.2 Design Problem 148 -- 7.3 SN-Based Dynamic Design 150 -- 7.3.1 Stability Design 152 -- 7.3.2 Dynamic Robust Design 153 -- 7.4 Case Study 160 -- 7.4.1 Stability Design 160 -- 7.4.2 Dynamic Robust Design 162 -- 7.5 Summary 165 -- 8 ROBUST EIGENVALUE DESIGN UNDER MODEL UNCERTAINTY 167 -- 8.1 Introduction 167 -- 8.2 Design Problem for Partially Unknown Dynamic Systems 168 -- 8.3 Stability Design 169 -- 8.3.1 Stability Design for Nominal Model 169.
505 8 _a8.3.2 Stability Design Under Model Uncertainty 169 -- 8.3.3 Stability Bound of Design Variables 171 -- 8.4 Robust Eigenvalue Design and Tolerance Design 172 -- 8.4.1 Robust Eigenvalue Design 172 -- 8.4.2 Tolerance Design 173 -- 8.4.3 Design Procedure 174 -- 8.5 Case Study 175 -- 8.5.1 Design of the Nominal Stability Space 175 -- 8.5.2 Design of the Stability Space 176 -- 8.5.3 Design of the Robust Stability Space 176 -- 8.5.4 Robust Eigenvalue Design 176 -- 8.5.5 Tolerance Design 177 -- 8.5.6 Design Verification 177 -- 8.6 Summary 180 -- IV INTEGRATION OF DESIGN AND CONTROL -- 9 DESIGN-FOR-CONTROL-BASED INTEGRATION 183 -- 9.1 Introduction 183 -- 9.2 Integration Problem 184 -- 9.3 Design-for-Control-Based Integration Methodology 186 -- 9.3.1 Design for Control 186 -- 9.3.2 Control Development 188 -- 9.3.3 Integration Optimization for Robust Pole Assignment 188 -- 9.3.4 Integration Procedure 191 -- 9.4 Case Study 192 -- 9.4.1 Design for Control 192 -- 9.4.2 Robust Pole Assignment 193 -- 9.4.3 Design Verification 193 -- 9.4.4 Design for Control 202 -- 9.4.5 Robust Dynamic Design and Verification 202 -- 9.5 Summary 204 -- 10 INTELLIGENCE-BASED HYBRID INTEGRATION 205 -- 10.1 Introduction 205 -- 10.2 Problem in Hybrid System in Manufacturing 207 -- 10.3 Intelligence-Based Hybrid Integration 208 -- 10.3.1 Intelligent Process Control 208 -- 10.3.2 Hybrid Integration Design 214 -- 10.3.3 Hierarchical Optimization of Integration 215 -- 10.4 Case Study 218 -- 10.4.1 Objective 219 -- 10.4.2 Integration Method for the Curing Process 220 -- 10.4.3 Verification and Comparison 222 -- 10.5 Summary 227 -- 11 CONCLUSIONS 229 -- 11.1 Summary and Conclusions 229 -- 11.2 Challenge 231 -- REFERENCES 233 -- INDEX 245.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/22/2015.
650 0 _aIntelligent control systems.
_93412
650 0 _aComputer integrated manufacturing systems.
_928485
655 0 _aElectronic books.
_93294
700 1 _aLu, XinJiang
_c(Manufacturing researcher)
_928486
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_928487
710 2 _aWiley,
_epublisher.
_928488
776 0 8 _iPrint version:
_z9781118822265
830 0 _aIEEE press series on systems science and engineering
_98461
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6954636
942 _cEBK
999 _c74372
_d74372