000 06876nam a2200685 i 4500
001 9107330
003 IEEE
005 20220712210027.0
006 m o d
007 cr |n|||||||||
008 200729s2020 njua ob 001 eng d
010 _z 2020013118 (print)
019 _a1159033437
020 _a9781119441861
_qelectronic bk.
020 _z1119441900
_qelectronic book
020 _z9781119441922
_qelectronic book
020 _z9781119441908
_qelectronic book
020 _z1119441927
_qelectronic book
020 _z1119441862
_qelectronic book
020 _z9781119441885
_qhardcover
020 _z1119441889
024 7 _a10.1002/9781119441908
_2doi
035 _a(CaBNVSL)mat09107330
035 _a(IDAMS)0b0000648cb834a7
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTJ209
_b.S46 2020eb
082 0 0 _a681/.753
_223
100 1 _aSenkal, Doruk,
_d1984-
_eauthor.
_929658
245 1 0 _aWhole-angle MEMs gyroscopes :
_bchallenges and opportunities /
_cDoruk Senkal, Andrei M. Shkel.
250 _aFirst edition.
264 1 _aHoboken, New Jersey :
_bJohn Wiley & Sons, Inc. ;
_aPiscataway, NJ :
_bIEEE Press,
_c[2020]
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2020]
300 _a1 PDF (xiv, 153 pages) :
_billustrations (chiefly color).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE Press series on sensors
504 _aIncludes bibliographical references and index.
505 8 _aCover -- Title Page -- Copyright Page -- Contents -- List of Abbreviations -- Preface -- About the Authors -- Part I Fundamentals of Whole-Angle Gyroscopes -- Chapter 1 Introduction -- 1.1 Types of Coriolis Vibratory Gyroscopes -- 1.1.1 Nondegenerate Mode Gyroscopes -- 1.1.2 Degenerate Mode Gyroscopes -- 1.2 Generalized CVG Errors -- 1.2.1 Scale Factor Errors -- 1.2.2 Bias Errors -- 1.2.3 Noise Processes -- 1.2.3.1 Allan Variance -- 1.3 Overview -- Chapter 2 Dynamics -- 2.1 Introduction to Whole-Angle Gyroscopes -- 2.2 Foucault Pendulum Analogy -- 2.2.1 Damping and Q-factor
505 8 _a2.2.1.1 Viscous Damping -- 2.2.1.2 Anchor Losses -- 2.2.1.3 Material Losses -- 2.2.1.4 Surface Losses -- 2.2.1.5 Mode Coupling Losses -- 2.2.1.6 Additional Dissipation Mechanisms -- 2.2.2 Principal Axes of Elasticity and Damping -- 2.3 Canonical Variables -- 2.4 Effect of Structural Imperfections -- 2.5 Challenges of Whole-Angle Gyroscopes -- Chapter 3 Control Strategies -- 3.1 Quadrature and Coriolis Duality -- 3.2 Rate Gyroscope Mechanization -- 3.2.1 Open-loop Mechanization -- 3.2.1.1 Drive Mode Oscillator -- 3.2.1.2 Amplitude Gain Control -- 3.2.1.3 Phase Locked Loop/Demodulation
505 8 _a3.2.1.4 Quadrature Cancellation -- 3.2.2 Force-to-rebalance Mechanization -- 3.2.2.1 Force-to-rebalance Loop -- 3.2.2.2 Quadrature Null Loop -- 3.3 Whole-Angle Mechanization -- 3.3.1 Control System Overview -- 3.3.2 Amplitude Gain Control -- 3.3.2.1 Vector Drive -- 3.3.2.2 Parametric Drive -- 3.3.3 Quadrature Null Loop -- 3.3.3.1 AC Quadrature Null -- 3.3.3.2 DC Quadrature Null -- 3.3.4 Force-to-rebalance and Virtual Carouseling -- 3.4 Conclusions -- Part II 2-D Micro-Machined Whole-Angle Gyroscope Architectures -- Chapter 4 Overview of 2-D Micro-Machined Whole-Angle Gyroscopes
505 8 _a4.1 2-D Micro-Machined Whole-Angle Gyroscope Architectures -- 4.1.1 Lumped Mass Systems -- 4.1.2 Ring/Disk Systems -- 4.1.2.1 Ring Gyroscopes -- 4.1.2.2 Concentric Ring Systems -- 4.1.2.3 Disk Gyroscopes -- 4.2 2-D Micro-Machining Processes -- 4.2.1 Traditional Silicon MEMS Process -- 4.2.2 Integrated MEMS/CMOS Fabrication Process -- 4.2.3 Epitaxial Silicon Encapsulation Process -- Chapter 5 Example 2-D Micro-Machined Whole-Angle Gyroscopes -- 5.1 A Distributed Mass MEMS Gyroscope -- Toroidal Ring Gyroscope -- 5.1.1 Architecture -- 5.1.1.1 Electrode Architecture
505 8 _a5.1.2 Experimental Demonstration of the Concept -- 5.1.2.1 Fabrication -- 5.1.2.2 Experimental Setup -- 5.1.2.3 Mechanical Characterization -- 5.1.2.4 Rate Gyroscope Operation -- 5.1.2.5 Comparison of Vector Drive and Parametric Drive -- 5.2 A Lumped Mass MEMS Gyroscope -- Dual Foucault Pendulum Gyroscope -- 5.2.1 Architecture -- 5.2.1.1 Electrode Architecture -- 5.2.2 Experimental Demonstration of the Concept -- 5.2.2.1 Fabrication -- 5.2.2.2 Experimental Setup -- 5.2.2.3 Mechanical Characterization -- 5.2.2.4 Rate Gyroscope Operation -- 5.2.2.5 Parameter Identification
506 _aRestricted to subscribers or individual electronic text purchasers.
520 _a"Coriolis Vibratory Gyroscopes (CVGs) can be divided into two broad categories based on the gyroscope's mechanical element: (Type 1) degenerate mode gyroscopes, which have x-y symmetry, and (Type 2) non-degenerate mode gyroscopes, which are designed intentionally to be asymmetric in x and y modes. Currently, non-degenerate mode gyroscopes fulfill the needs of a variety of commercial applications, such as tilt detection, activity tracking, and gaming. However, when it comes to inertial navigation, where sensitivity and stability of the sensors are very important, commercially available MEMS sensors fall short by three orders of magnitude. Degenerate mode gyroscopes on the other hand, have a number of unique advantages compared to non-degenerate vibratory rate gyroscopes, including higher rate sensitivity, ability to implement whole-angle mechanization with mechanically unlimited dynamic range, exceptional scale factor stability, and a potential for self-calibration. For this reason, as the MEMS gyroscope development is reaching maturity, the Research and Development focus is shifting from high-volume production of low-cost non-degenerate mode gyroscopes to high performance degenerate mode gyroscopes. This paradigm shift in MEMS gyroscope research and development creates a need for a reference book to serve both as a guide and an entry point to the world of degenerate mode gyroscopes"--
_cProvided by publisher.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
650 0 _aGyroscopes.
_99050
650 0 _aAdaptive control systems.
_97063
650 0 _aAccelerometers.
_99051
650 0 _aMicroelectromechanical systems.
_96063
655 4 _aElectronic books.
_93294
700 1 _aShkel, Andrei,
_eauthor.
_929659
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_929660
710 2 _aWiley,
_epublisher.
_929661
776 0 8 _iPrint version:
_aSenkal, Doruk, 1984-
_tWhole angle MEMs gyroscopes
_bFirst edition.
_dHoboken, New Jersey : John Wiley & Sons, Inc., [2020]
_z9781119441885
_w(DLC) 2020013117
830 0 _aIEEE Press series on sensors
_99192
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=9107330
942 _cEBK
999 _c74646
_d74646