000 03382nam a22005295i 4500
001 978-3-030-37962-9
003 DE-He213
005 20220801214717.0
007 cr nn 008mamaa
008 200208s2020 sz | s |||| 0|eng d
020 _a9783030379629
_9978-3-030-37962-9
024 7 _a10.1007/978-3-030-37962-9
_2doi
050 4 _aTK7867-7867.5
072 7 _aTJFC
_2bicssc
072 7 _aTEC008010
_2bisacsh
072 7 _aTJFC
_2thema
082 0 4 _a621.3815
_223
100 1 _aRokka Chhetri, Sujit.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_939967
245 1 0 _aData-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis
_h[electronic resource] /
_cby Sujit Rokka Chhetri, Mohammad Abdullah Al Faruque.
250 _a1st ed. 2020.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2020.
300 _aXVI, 235 p. 111 illus., 106 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
520 _aThis book provides a new perspective on modeling cyber-physical systems (CPS), using a data-driven approach. The authors cover the use of state-of-the-art machine learning and artificial intelligence algorithms for modeling various aspect of the CPS. This book provides insight on how a data-driven modeling approach can be utilized to take advantage of the relation between the cyber and the physical domain of the CPS to aid the first-principle approach in capturing the stochastic phenomena affecting the CPS. The authors provide practical use cases of the data-driven modeling approach for securing the CPS, presenting novel attack models, building and maintaining the digital twin of the physical system. The book also presents novel, data-driven algorithms to handle non- Euclidean data. In summary, this book presents a novel perspective for modeling the CPS. · Provides an introduction to the data-driven modeling of cyber-physical systems (CPS), to aid in capturing the stochastic phenomenon affecting CPS; · Describes practical applications for securing the CPS as well as building the digital twin of the physical twin of CPS; · Includes coverage of machine learning and artificial intelligence algorithms for data-driven modeling of the CPS; Provides novel algorithms for handling not just Euclidean data, but also non-Euclidean data.
650 0 _aElectronic circuits.
_919581
650 0 _aCooperating objects (Computer systems).
_96195
650 0 _aMicroprocessors.
_939968
650 0 _aComputer architecture.
_93513
650 1 4 _aElectronic Circuits and Systems.
_939969
650 2 4 _aCyber-Physical Systems.
_932475
650 2 4 _aProcessor Architectures.
_939970
700 1 _aAl Faruque, Mohammad Abdullah.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_939971
710 2 _aSpringerLink (Online service)
_939972
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030379612
776 0 8 _iPrinted edition:
_z9783030379636
776 0 8 _iPrinted edition:
_z9783030379643
856 4 0 _uhttps://doi.org/10.1007/978-3-030-37962-9
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c76659
_d76659