000 | 03756nam a22005415i 4500 | ||
---|---|---|---|
001 | 978-3-319-99223-5 | ||
003 | DE-He213 | ||
005 | 20220801214933.0 | ||
007 | cr nn 008mamaa | ||
008 | 181023s2019 sz | s |||| 0|eng d | ||
020 |
_a9783319992235 _9978-3-319-99223-5 |
||
024 | 7 |
_a10.1007/978-3-319-99223-5 _2doi |
|
050 | 4 | _aTK7867-7867.5 | |
072 | 7 |
_aTJFC _2bicssc |
|
072 | 7 |
_aTEC008010 _2bisacsh |
|
072 | 7 |
_aTJFC _2thema |
|
082 | 0 | 4 |
_a621.3815 _223 |
100 | 1 |
_aMoons, Bert. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _941367 |
|
245 | 1 | 0 |
_aEmbedded Deep Learning _h[electronic resource] : _bAlgorithms, Architectures and Circuits for Always-on Neural Network Processing / _cby Bert Moons, Daniel Bankman, Marian Verhelst. |
250 | _a1st ed. 2019. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2019. |
|
300 |
_aXVI, 206 p. 124 illus., 92 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aChapter 1 Embedded Deep Neural Networks -- Chapter 2 Optimized Hierarchical Cascaded Processing -- Chapter 3 Hardware-Algorithm Co-optimizations -- Chapter 4 Circuit Techniques for Approximate Computing -- Chapter 5 ENVISION: Energy-Scalable Sparse Convolutional Neural Network Processing -- Chapter 6 BINAREYE: Digital and Mixed-signal Always-on Binary Neural Network Processing -- Chapter 7 Conclusions, contributions and future work. | |
520 | _aThis book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts. | ||
650 | 0 |
_aElectronic circuits. _919581 |
|
650 | 0 |
_aSignal processing. _94052 |
|
650 | 0 |
_aElectronics. _93425 |
|
650 | 1 | 4 |
_aElectronic Circuits and Systems. _941368 |
650 | 2 | 4 |
_aSignal, Speech and Image Processing . _931566 |
650 | 2 | 4 |
_aElectronics and Microelectronics, Instrumentation. _932249 |
700 | 1 |
_aBankman, Daniel. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _941369 |
|
700 | 1 |
_aVerhelst, Marian. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _941370 |
|
710 | 2 |
_aSpringerLink (Online service) _941371 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319992228 |
776 | 0 | 8 |
_iPrinted edition: _z9783319992242 |
776 | 0 | 8 |
_iPrinted edition: _z9783030075774 |
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-99223-5 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c76923 _d76923 |