000 03539nam a22005295i 4500
001 978-3-658-24875-8
003 DE-He213
005 20220801215354.0
007 cr nn 008mamaa
008 181228s2019 gw | s |||| 0|eng d
020 _a9783658248758
_9978-3-658-24875-8
024 7 _a10.1007/978-3-658-24875-8
_2doi
050 4 _aTL1-483
072 7 _aTRC
_2bicssc
072 7 _aTEC009090
_2bisacsh
072 7 _aTRC
_2thema
082 0 4 _a629.2
_223
100 1 _aFandakov, Alexander.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_943978
245 1 2 _aA Phenomenological Knock Model for the Development of Future Engine Concepts
_h[electronic resource] /
_cby Alexander Fandakov.
250 _a1st ed. 2019.
264 1 _aWiesbaden :
_bSpringer Fachmedien Wiesbaden :
_bImprint: Springer Vieweg,
_c2019.
300 _aXXXIX, 233 p. 1 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aWissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart,
_x2567-0352
505 0 _aExperimental Investigations and Thermodynamic Analysis -- Unburnt Mixture Auto-Ignition Prediction -- Knock Occurrence Criterion -- Knock Model Validation.
520 _aThe majority of 0D/1D knock models available today are known for their poor accuracy and the great effort needed for their calibration. Alexander Fandakov presents a novel, extensively validated phenomenological knock model for the development of future engine concepts within a 0D/1D simulation environment that has one engine-specific calibration parameter. Benchmarks against the models commonly used in the automotive industry reveal the huge gain in knock boundary prediction accuracy achieved with the approach proposed in this work. Thus, the new knock model contributes substantially to the efficient design of spark ignition engines employing technologies such as full-load exhaust gas recirculation, water injection, variable compression ratio or lean combustion. Contents Experimental Investigations and Thermodynamic Analysis Unburnt Mixture Auto-Ignition Prediction Knock Occurrence Criterion Knock Model Validation Target Groups Researchers and students in the field of automotive engineering, especially internal combustion engine simulation and modeling Automotive powertrain developers and automotive engineers in general About the Author Alexander Fandakov holds a PhD in automotive powertrain engineering from the Institute of Internal Combustion Engines and Automotive Engineering (IVK) at the University of Stuttgart, Germany. Currently, he is working as an advanced powertrain development engineer in the automotive industry.
650 0 _aAutomotive engineering.
_943979
650 0 _aEngines.
_932152
650 0 _aComputer simulation.
_95106
650 1 4 _aAutomotive Engineering.
_943980
650 2 4 _aEngine Technology.
_932154
650 2 4 _aComputer Modelling.
_943981
710 2 _aSpringerLink (Online service)
_943982
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783658248741
776 0 8 _iPrinted edition:
_z9783658248765
830 0 _aWissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart,
_x2567-0352
_943983
856 4 0 _uhttps://doi.org/10.1007/978-3-658-24875-8
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c77417
_d77417