000 03585nam a22005775i 4500
001 978-3-030-61191-0
003 DE-He213
005 20220801215810.0
007 cr nn 008mamaa
008 201126s2021 sz | s |||| 0|eng d
020 _a9783030611910
_9978-3-030-61191-0
024 7 _a10.1007/978-3-030-61191-0
_2doi
050 4 _aTK5102.9
072 7 _aTJF
_2bicssc
072 7 _aUYS
_2bicssc
072 7 _aTEC008000
_2bisacsh
072 7 _aTJF
_2thema
072 7 _aUYS
_2thema
082 0 4 _a621.382
_223
100 1 _aStreit, Roy.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_946513
245 1 0 _aAnalytic Combinatorics for Multiple Object Tracking
_h[electronic resource] /
_cby Roy Streit, Robert Blair Angle, Murat Efe.
250 _a1st ed. 2021.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2021.
300 _aXVI, 221 p. 16 illus., 15 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Extended object tracking -- Multiple sensors -- Other high computational complexity tracking problems -- Multiframe assignment and combinatorial optimization -- Saddle Point Method -- Multicomplex Algebra -- Automatic Differentiation -- Conclusion.
520 _aThe book shows that the analytic combinatorics (AC) method encodes the combinatorial problems of multiple object tracking—without information loss—into the derivatives of a generating function (GF). The book lays out an easy-to-follow path from theory to practice and includes salient AC application examples. Since GFs are not widely utilized amongst the tracking community, the book takes the reader from the basics of the subject to applications of theory starting from the simplest problem of single object tracking, and advancing chapter by chapter to more challenging multi-object tracking problems. Many established tracking filters (e.g., Bayes-Markov, PDA, JPDA, IPDA, JIPDA, CPHD, PHD, multi-Bernoulli, MBM, LMBM, and MHT) are derived in this manner with simplicity, economy, and considerable clarity. The AC method gives significant and fresh insights into the modeling assumptions of these filters and, thereby, also shows the potential utility of various approximation methods that are well established techniques in applied mathematics and physics, but are new to tracking. These unexplored possibilities are reviewed in the final chapter of the book. .
650 0 _aSignal processing.
_94052
650 0 _aComputer science—Mathematics.
_931682
650 0 _aMathematical statistics.
_99597
650 0 _aProbabilities.
_94604
650 1 4 _aSignal, Speech and Image Processing .
_931566
650 2 4 _aProbability and Statistics in Computer Science.
_931857
650 2 4 _aProbability Theory.
_917950
700 1 _aAngle, Robert Blair.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_946514
700 1 _aEfe, Murat.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_946515
710 2 _aSpringerLink (Online service)
_946516
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030611903
776 0 8 _iPrinted edition:
_z9783030611927
776 0 8 _iPrinted edition:
_z9783030611934
856 4 0 _uhttps://doi.org/10.1007/978-3-030-61191-0
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c77874
_d77874