000 03836nam a22006015i 4500
001 978-981-33-4448-8
003 DE-He213
005 20220801220129.0
007 cr nn 008mamaa
008 210118s2021 si | s |||| 0|eng d
020 _a9789813344488
_9978-981-33-4448-8
024 7 _a10.1007/978-981-33-4448-8
_2doi
050 4 _aTK2897
072 7 _aTHRH
_2bicssc
072 7 _aTEC031000
_2bisacsh
072 7 _aTHY
_2thema
082 0 4 _a621.31
_223
100 1 _aYlli, Klevis.
_eauthor.
_0(orcid)0000-0002-0514-3081
_1https://orcid.org/0000-0002-0514-3081
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_948517
245 1 0 _aEnergy Harvesting for Wearable Sensor Systems
_h[electronic resource] :
_b Inductive Architectures for the Swing Excitation of the Leg /
_cby Klevis Ylli, Yiannos Manoli.
250 _a1st ed. 2021.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2021.
300 _aXXIX, 143 p. 97 illus., 55 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Series in Advanced Microelectronics,
_x2197-6643 ;
_v62
505 0 _aAbstract -- 1. Introduction -- 2. Theory and Modeling -- 3. Geometrical Parameter Optimization -- 4. Experimental Evaluation of Fabricated Architectures -- 5. Second Optimization Run -- 6. Second Generation HAC Experimental Results -- 7. Applications -- 8. Conclusion and Outlook -- A. Appendix -- B. List of Publications -- Bibliography -- Nomenclature.
520 _aThis book investigates several non-resonant inductive harvester architectures in order to find the magnet coil arrangement that generates the largest power output. The book is useful as a step-by-step guide for readers unfamiliar with this form of energy harvesting, but who want to build their own system models to calculate the magnet motion and, from that, the power generation available for body-worn sensor systems. The detailed description of system model development will greatly facilitate experimental work with the aim of fabricating the design with the highest predicted power output. Based on the simulated optimal geometry, fabricated devices achieve an average power output of up to 43 mW during walking, an amount of power that can supply modern low-power, body-worn systems. Experiments were also carried out in industrial applications with power outputs up to 15 mW. In sum, researchers and engineers will find a step-by-step introduction to inductive harvesting and its modeling aspects for achieving optimal harvester designs in an efficient manner. .
650 0 _aEnergy harvesting.
_92541
650 0 _aElectronics.
_93425
650 0 _aElectrodynamics.
_93703
650 0 _aBiomedical engineering.
_93292
650 0 _aElectric power production.
_927574
650 1 4 _aEnergy Harvesting.
_92541
650 2 4 _aElectronics and Microelectronics, Instrumentation.
_932249
650 2 4 _aClassical Electrodynamics.
_931625
650 2 4 _aBiomedical Engineering and Bioengineering.
_931842
650 2 4 _aElectrical Power Engineering.
_931821
700 1 _aManoli, Yiannos.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_948518
710 2 _aSpringerLink (Online service)
_948519
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789813344471
776 0 8 _iPrinted edition:
_z9789813344495
776 0 8 _iPrinted edition:
_z9789813344501
830 0 _aSpringer Series in Advanced Microelectronics,
_x2197-6643 ;
_v62
_948520
856 4 0 _uhttps://doi.org/10.1007/978-981-33-4448-8
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c78234
_d78234