000 | 05271nam a22006255i 4500 | ||
---|---|---|---|
001 | 978-3-030-55594-8 | ||
003 | DE-He213 | ||
005 | 20220801220223.0 | ||
007 | cr nn 008mamaa | ||
008 | 210210s2021 sz | s |||| 0|eng d | ||
020 |
_a9783030555948 _9978-3-030-55594-8 |
||
024 | 7 |
_a10.1007/978-3-030-55594-8 _2doi |
|
050 | 4 | _aTA357-359 | |
072 | 7 |
_aTGMF _2bicssc |
|
072 | 7 |
_aTEC009070 _2bisacsh |
|
072 | 7 |
_aTGMF _2thema |
|
082 | 0 | 4 |
_a620.1064 _223 |
245 | 1 | 0 |
_aAdvances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications _h[electronic resource] : _bProceedings of the IUTAM Symposium on Critical Flow Dynamics involving Moving/Deformable Structures with Design applications, June 18-22, 2018, Santorini, Greece / _cedited by Marianna Braza, Kerry Hourigan, Michael Triantafyllou. |
250 | _a1st ed. 2021. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2021. |
|
300 |
_aXIII, 599 p. 352 illus., 287 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aNotes on Numerical Fluid Mechanics and Multidisciplinary Design, _x1860-0824 ; _v147 |
|
505 | 0 | _aAlteration of the Spanwise Structure of the Turbulent Flow Past a Cylinder Subjected to Vortex-Induced Vibrations -- Flow Past an Oscillating Cylinder Effects of Oscillation Mode on Wake Structure -- Validation of Coupled CFD-CSM Methods for Vibration Phenomena in Nuclear Reactor Cores -- Stress Analysis of Wind Turbine Tower Flange Using Fluid-Structure Interaction Method -- The Dynamics of Bumblebee Wing Pitching Rotation Measurement And Modelling -- FSI Simulation Using a Membrane Model Inflation of Balloons -- Synergistic Flow Induced Oscillations of Multiple Cylinders in Harvesting Marine Hydrokinetic Energy -- Dynamic Response of Wall-Mounted Flaps in an Oscillating Crossflow. | |
520 | _aThis book reports on the latest knowledge concerning critical phenomena arising in fluid-structure interaction due to movement and/or deformation of bodies. The focus of the book is on reporting progress in understanding turbulence and flow control to improve aerodynamic / hydrodynamic performance by reducing drag, increasing lift or thrust and reducing noise under critical conditions that may result in massive separation, strong vortex dynamics, amplification of harmful instabilities (flutter, buffet), and flow -induced vibrations. Theory together with large-scale simulations and experiments have revealed new features of turbulent flow in the boundary layer over bodies and in thin shear layers immediately downstream of separation. New insights into turbulent flow interacting with actively deformable structures, leading to new ways of adapting and controlling the body shape and vibrations to respond to these critical conditions, are investigated. The book covers new features of turbulent flows in boundary layers over wings and in shear layers immediately downstream: studies of natural and artificially generated fluctuations; reduction of noise and drag; and electromechanical conversion topics. Smart actuators as well as how smart designs lead to considerable benefits compared with conventional methods are also extensively discussed. Based on contributions presented at the IUTAM Symposium “Critical Flow Dynamics involving Moving/Deformable Structures with Design applications”, held in June 18-22, 2018, in Santorini, Greece, the book provides readers with extensive information about current theories, methods and challenges in flow and turbulence control, and practical knowledge about how to use this information together with smart and bio-inspired design tools to improve aerodynamic and hydrodynamic design and safety. . | ||
650 | 0 |
_aFluid mechanics. _92810 |
|
650 | 0 |
_aMathematical physics. _911013 |
|
650 | 0 |
_aEngineering design. _93802 |
|
650 | 0 |
_aBiomedical engineering. _93292 |
|
650 | 0 |
_aDynamics. _949016 |
|
650 | 0 |
_aNonlinear theories. _93339 |
|
650 | 1 | 4 |
_aEngineering Fluid Dynamics. _949017 |
650 | 2 | 4 |
_aTheoretical, Mathematical and Computational Physics. _931560 |
650 | 2 | 4 |
_aEngineering Design. _93802 |
650 | 2 | 4 |
_aBiomedical Engineering and Bioengineering. _931842 |
650 | 2 | 4 |
_aApplied Dynamical Systems. _932005 |
700 | 1 |
_aBraza, Marianna. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _949018 |
|
700 | 1 |
_aHourigan, Kerry. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _949019 |
|
700 | 1 |
_aTriantafyllou, Michael. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _949020 |
|
710 | 2 |
_aSpringerLink (Online service) _949021 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783030555931 |
776 | 0 | 8 |
_iPrinted edition: _z9783030555955 |
776 | 0 | 8 |
_iPrinted edition: _z9783030555962 |
830 | 0 |
_aNotes on Numerical Fluid Mechanics and Multidisciplinary Design, _x1860-0824 ; _v147 _949022 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-030-55594-8 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c78334 _d78334 |