000 04045nam a22006135i 4500
001 978-3-319-73183-4
003 DE-He213
005 20220801221412.0
007 cr nn 008mamaa
008 180103s2018 sz | s |||| 0|eng d
020 _a9783319731834
_9978-3-319-73183-4
024 7 _a10.1007/978-3-319-73183-4
_2doi
050 4 _aTK5102.9
072 7 _aTJF
_2bicssc
072 7 _aUYS
_2bicssc
072 7 _aTEC008000
_2bisacsh
072 7 _aTJF
_2thema
072 7 _aUYS
_2thema
082 0 4 _a621.382
_223
100 1 _aThanki, Rohit M.
_eauthor.
_0(orcid)0000-0002-0645-6266
_1https://orcid.org/0000-0002-0645-6266
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955825
245 1 0 _aMultibiometric Watermarking with Compressive Sensing Theory
_h[electronic resource] :
_bTechniques and Applications /
_cby Rohit M. Thanki, Vedvyas J. Dwivedi, Komal R. Borisagar.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aXXI, 172 p. 104 illus., 48 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSignals and Communication Technology,
_x1860-4870
505 0 _aChapter 1. Introduction -- Chapter 2.Related Works and Background Information -- Chapter 3.Issues in Biometric System and Proposed Research Methodology -- Chapter 4.Multibiometric Watermarking Technique using Discrete Wavelet Trans-form (DWT) -- Chapter 5. Multibiometric Watermarking Technique using Discrete Cosine Trans-form (DCT) and Discrete Wavelet Transform (DWT) -- Chapter 6.Multibiometric Watermarking Technique using Discrete Wavelet Trans-form (DWT) and Singular Value Decomposition (SVD) -- Chapter 7.Multibiometric Watermarking Technique using Fast Discrete Curvelet Transform (FDCuT) and Discrete Cosine Transform (DCT) -- Chapter 8.Conclusions and Future Work.
520 _aThis book presents multibiometric watermarking techniques for security of biometric data. This book also covers transform domain multibiometric watermarking techniques and their advantages and limitations. The authors have developed novel watermarking techniques with a combination of Compressive Sensing (CS) theory for the security of biometric data at the system database of the biometric system. The authors show how these techniques offer higher robustness, authenticity, better imperceptibility, increased payload capacity, and secure biometric watermarks. They show how to use the CS theory for the security of biometric watermarks before embedding into the host biometric data. The suggested methods may find potential applications in the security of biometric data at various banking applications, access control of laboratories, nuclear power stations, military base, and airports.
650 0 _aSignal processing.
_94052
650 0 _aComputational linguistics.
_96146
650 0 _aNatural language processing (Computer science).
_94741
650 0 _aDatabase management.
_93157
650 1 4 _aSignal, Speech and Image Processing .
_931566
650 2 4 _aComputational Linguistics.
_96146
650 2 4 _aNatural Language Processing (NLP).
_931587
650 2 4 _aDatabase Management.
_93157
700 1 _aDwivedi, Vedvyas J.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955826
700 1 _aBorisagar, Komal R.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955827
710 2 _aSpringerLink (Online service)
_955828
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319731827
776 0 8 _iPrinted edition:
_z9783319731841
776 0 8 _iPrinted edition:
_z9783319892399
830 0 _aSignals and Communication Technology,
_x1860-4870
_955829
856 4 0 _uhttps://doi.org/10.1007/978-3-319-73183-4
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c79632
_d79632