000 04165nam a22006255i 4500
001 978-3-319-58062-3
003 DE-He213
005 20220801221541.0
007 cr nn 008mamaa
008 170624s2018 sz | s |||| 0|eng d
020 _a9783319580623
_9978-3-319-58062-3
024 7 _a10.1007/978-3-319-58062-3
_2doi
050 4 _aTA352-356
050 4 _aQC20.7.N6
072 7 _aTBJ
_2bicssc
072 7 _aGPFC
_2bicssc
072 7 _aTEC009000
_2bisacsh
072 7 _aTBJ
_2thema
072 7 _aGPFC
_2thema
082 0 4 _a515.39
_223
245 1 0 _aRegularity and Stochasticity of Nonlinear Dynamical Systems
_h[electronic resource] /
_cedited by Dimitri Volchenkov, Xavier Leoncini.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aX, 311 p. 99 illus., 79 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aNonlinear Systems and Complexity,
_x2196-0003 ;
_v21
505 0 _aSolvability of Some Integro-Differential Equations with Anomalous Diffusion -- Poincare Recurrences in Ergodic Systems Without Mixing -- Success, Hierarchy, and Inequality under Uncertainty -- Grazing in Impulsive Differential Equations -- On Local Topological Classification of Two-dimensional Orientable, Nonorientable and Half-orientable Horseshoes -- From Chaos to Order in a Ring of Coupled Oscillator Swith Frequency Mismatch -- Dynamics of some nonlinear meromorphic functions -- Dynamics of oscillatory networks with pulse delayed coupling -- Bifurcation trees of period-3 motions to chaos in a time-delayed Duffing Oscillator -- Travelable Period-1 Motions to Chaos in a Periodically Excited Pendulum -- Automorphic systems and differential-invariant solutions.
520 _aThis book presents recent developments in nonlinear dynamics and physics with an emphasis on complex systems. The contributors provide recent theoretic developments and new techniques to solve nonlinear dynamical systems and help readers understand complexity, stochasticity, and regularity in nonlinear dynamical systems. This book covers integro-differential equation solvability, Poincare recurrences in ergodic systems, orientable horseshoe structure, analytical routes of periodic motions to chaos, grazing on impulsive differential equations, from chaos to order in coupled oscillators, and differential-invariant solutions for automorphic systems, inequality under uncertainty. Presents the most up-to-date understanding in nonlinear dynamical systems along with new theories and methodologies applied to nonlinear physics, engineering, and social science; Includes differential-invariant solutions, classification of orientable horseshoes, and nonlinear time-delay systems; Illustrates solution routes to chaos for nonlinear differential equations.
650 0 _aDynamics.
_956666
650 0 _aNonlinear theories.
_93339
650 0 _aNonlinear Optics.
_911414
650 0 _aDifferential equations.
_956667
650 0 _aDynamical systems.
_956668
650 1 4 _aApplied Dynamical Systems.
_932005
650 2 4 _aNonlinear Optics.
_911414
650 2 4 _aDifferential Equations.
_956669
650 2 4 _aDynamical Systems.
_956670
700 1 _aVolchenkov, Dimitri.
_eeditor.
_0(orcid)0000-0002-3378-365X
_1https://orcid.org/0000-0002-3378-365X
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_956671
700 1 _aLeoncini, Xavier.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_956672
710 2 _aSpringerLink (Online service)
_956673
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319580616
776 0 8 _iPrinted edition:
_z9783319580630
776 0 8 _iPrinted edition:
_z9783319863139
830 0 _aNonlinear Systems and Complexity,
_x2196-0003 ;
_v21
_956674
856 4 0 _uhttps://doi.org/10.1007/978-3-319-58062-3
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c79789
_d79789