000 03826nam a22006015i 4500
001 978-981-287-880-9
003 DE-He213
005 20220801222039.0
007 cr nn 008mamaa
008 160211s2016 si | s |||| 0|eng d
020 _a9789812878809
_9978-981-287-880-9
024 7 _a10.1007/978-981-287-880-9
_2doi
050 4 _aQ342
072 7 _aUYQ
_2bicssc
072 7 _aTEC009000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
100 1 _aPeterson, James.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_959404
245 1 0 _aCalculus for Cognitive Scientists
_h[electronic resource] :
_bPartial Differential Equation Models /
_cby James Peterson.
250 _a1st ed. 2016.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2016.
300 _aXXXI, 534 p. 156 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aCognitive Science and Technology,
_x2195-3996
505 0 _aIntroduction -- Graham - Schmidt Orthogonalization -- Numerical Differential Equations -- Biological Molecules -- Ion Movement -- Lumped and Distributed Cell Models -- Time Independent Solutions to Infinite Cables -- Time Independent Solutions to Finite and Half-Infinite Space Cables -- A Primer On Series Solutions -- Linear Partial Differential Equations -- Simplified Dendrite - Soma – Axon Information Processing -- The Basic Hodgkin - Huxley Model -- Final Thoughts -- Background Reading.
520 _aThis book shows cognitive scientists in training how mathematics, computer science and science can be usefully and seamlessly intertwined. It is a follow-up to the first two volumes on mathematics for cognitive scientists, and includes the mathematics and computational tools needed to understand how to compute the terms in the Fourier series expansions that solve the cable equation. The latter is derived from first principles by going back to cellular biology and the relevant biophysics.  A detailed discussion of ion movement through cellular membranes, and an explanation of how the equations that govern such ion movement leading to the standard transient cable equation are included. There are also solutions for the cable model using separation of variables, as well an explanation of why Fourier series converge and a description of the implementation of MatLab tools to compute the solutions. Finally, the standard Hodgkin - Huxley model is developed for an excitable neuron and is solved using MatLab.
650 0 _aComputational intelligence.
_97716
650 0 _aMathematical physics.
_911013
650 0 _aNeural networks (Computer science) .
_959405
650 0 _aArtificial intelligence.
_93407
650 0 _aImage processing—Digital techniques.
_931565
650 0 _aComputer vision.
_959406
650 1 4 _aComputational Intelligence.
_97716
650 2 4 _aTheoretical, Mathematical and Computational Physics.
_931560
650 2 4 _aMathematical Models of Cognitive Processes and Neural Networks.
_932913
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
_931569
710 2 _aSpringerLink (Online service)
_959407
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789812878786
776 0 8 _iPrinted edition:
_z9789812878793
776 0 8 _iPrinted edition:
_z9789811357213
830 0 _aCognitive Science and Technology,
_x2195-3996
_959408
856 4 0 _uhttps://doi.org/10.1007/978-981-287-880-9
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c80341
_d80341