000 04014nam a22006495i 4500
001 978-3-319-56934-5
003 DE-He213
005 20220801222143.0
007 cr nn 008mamaa
008 170505s2017 sz | s |||| 0|eng d
020 _a9783319569345
_9978-3-319-56934-5
024 7 _a10.1007/978-3-319-56934-5
_2doi
050 4 _aTA349-359
072 7 _aTGMD
_2bicssc
072 7 _aSCI096000
_2bisacsh
072 7 _aTGMD
_2thema
082 0 4 _a620.105
_223
100 1 _aBerezovski, Arkadi.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_959990
245 1 0 _aInternal Variables in Thermoelasticity
_h[electronic resource] /
_cby Arkadi Berezovski, Peter Ván.
250 _a1st ed. 2017.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2017.
300 _aVIII, 220 p. 37 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSolid Mechanics and Its Applications,
_x2214-7764 ;
_v243
505 0 _aPart I Internal variables in thermomechanics -- 2 Introduction -- 3 Thermomechanical single internal variable theory -- 4 Dual internal variables -- Part II Dispersive elastic waves in one dimension -- 5 Internal variables and microinertia -- 6 Dispersive elastic waves -- 7 One-dimensional microelasticity -- 8 Influence of nonlinearity -- Part III Thermal effects -- 9 The role of heterogeneity in heat pulse propagation in a solid with inner structure -- 10 Heat conduction in microstructured solids -- 11 One-dimensional thermoelasticity with dual internal variables -- 12 Influence of microstructure on thermoelastic wave propagation -- Part IV Weakly nonlocal thermoelasticity for microstructured solids -- 13 Microdeformation and microtemperature -- Appendix A: Sketch of thermostatics -- Appendix B: Finite-volume numerical algorithm -- Index.
520 _aThis book describes an effective method for modeling advanced materials like polymers, composite materials and biomaterials, which are, as a rule, inhomogeneous. The thermoelastic theory with internal variables presented here provides a general framework for predicting a material’s reaction to external loading. The basic physical principles provide the primary theoretical information, including the evolution equations of the internal variables. The cornerstones of this framework are the material representation of continuum mechanics, a weak nonlocality, a non-zero extra entropy flux, and a consecutive employment of the dissipation inequality. Examples of thermoelastic phenomena are provided, accompanied by detailed procedures demonstrating how to simulate them.
650 0 _aMechanics, Applied.
_93253
650 0 _aSolids.
_93750
650 0 _aThermodynamics.
_93554
650 0 _aHeat engineering.
_95144
650 0 _aHeat transfer.
_932329
650 0 _aMass transfer.
_94272
650 0 _aPhysics.
_912639
650 0 _aMathematical physics.
_911013
650 0 _aMathematical models.
_94632
650 1 4 _aSolid Mechanics.
_931612
650 2 4 _aEngineering Thermodynamics, Heat and Mass Transfer.
_932330
650 2 4 _aClassical and Continuum Physics.
_932331
650 2 4 _aMathematical Physics.
_911013
650 2 4 _aMathematical Modeling and Industrial Mathematics.
_933097
700 1 _aVán, Peter.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_959991
710 2 _aSpringerLink (Online service)
_959992
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319569338
776 0 8 _iPrinted edition:
_z9783319569352
776 0 8 _iPrinted edition:
_z9783319860398
830 0 _aSolid Mechanics and Its Applications,
_x2214-7764 ;
_v243
_959993
856 4 0 _uhttps://doi.org/10.1007/978-3-319-56934-5
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c80457
_d80457