000 03686nam a22006255i 4500
001 978-981-10-2021-6
003 DE-He213
005 20220801222453.0
007 cr nn 008mamaa
008 161004s2017 si | s |||| 0|eng d
020 _a9789811020216
_9978-981-10-2021-6
024 7 _a10.1007/978-981-10-2021-6
_2doi
050 4 _aTJ807-830
072 7 _aTHX
_2bicssc
072 7 _aTEC031010
_2bisacsh
072 7 _aTHV
_2thema
082 0 4 _a621.042
_223
100 1 _aWu, Bo.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_961665
245 1 0 _aPlasmonic Organic Solar Cells
_h[electronic resource] :
_bCharge Generation and Recombination /
_cby Bo Wu, Nripan Mathews, Tze-Chien Sum.
250 _a1st ed. 2017.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2017.
300 _aIX, 106 p. 77 illus., 73 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aNanoscience and Nanotechnology,
_x2196-1689
505 0 _aIntroduction -- Surface Plasmon Resonance -- Characterization Techniques -- Plasmonic Entities within the Charge Transporting Layer -- Plasmonic Entities within the Active Layer -- Concluding Remarks.
520 _aThis book explores the incorporation of plasmonic nanostructures into organic solar cells, which offers an attractive light trapping and absorption approach to enhance power conversion efficiencies. The authors review the latest advances in the field and discuss the characterization of these hybrid devices using a combination of optical and electrical probes. Transient optical spectroscopies such as transient absorption and transient photoluminescence spectroscopy offer powerful tools for observing charge carrier dynamics in plasmonic organic solar cells. In conjunction with device electrical characterizations, they provide unambiguous proof of the effect of the plasmonic nanostructures on the solar cells’ performance. However, there have been a number of controversies over the effects of such integration – where both enhanced and decreased performance have been reported. Importantly, the new insights into the photophysics and charge dynamics of plasmonic organic solar cells that these spectroscopy methods yield could be used to resolve these controversies and provide clear guidelines for device design and fabrication.
650 0 _aRenewable energy sources.
_94906
650 0 _aOptical materials.
_97729
650 0 _aLasers.
_97879
650 0 _aMicrotechnology.
_928219
650 0 _aMicroelectromechanical systems.
_96063
650 0 _aElectric power production.
_927574
650 1 4 _aRenewable Energy.
_913722
650 2 4 _aOptical Materials.
_97729
650 2 4 _aLaser.
_931624
650 2 4 _aMicrosystems and MEMS.
_961666
650 2 4 _aElectrical Power Engineering.
_931821
650 2 4 _aMechanical Power Engineering.
_932122
700 1 _aMathews, Nripan.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_97963
700 1 _aSum, Tze-Chien.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_97962
710 2 _aSpringerLink (Online service)
_961667
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789811020193
776 0 8 _iPrinted edition:
_z9789811020209
830 0 _aNanoscience and Nanotechnology,
_x2196-1689
_961668
856 4 0 _uhttps://doi.org/10.1007/978-981-10-2021-6
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c80803
_d80803