000 03666nam a22006015i 4500
001 978-3-319-24211-8
003 DE-He213
005 20220801222732.0
007 cr nn 008mamaa
008 160429s2016 sz | s |||| 0|eng d
020 _a9783319242118
_9978-3-319-24211-8
024 7 _a10.1007/978-3-319-24211-8
_2doi
050 4 _aTK5101-5105.9
072 7 _aTJK
_2bicssc
072 7 _aTEC041000
_2bisacsh
072 7 _aTJK
_2thema
082 0 4 _a621.382
_223
245 1 0 _aUnsupervised Learning Algorithms
_h[electronic resource] /
_cedited by M. Emre Celebi, Kemal Aydin.
250 _a1st ed. 2016.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2016.
300 _aX, 558 p. 160 illus., 101 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Feature Construction -- Feature Extraction -- Feature Selection -- Association Rule Learning -- Clustering -- Anomaly/Novelty/Outlier Detection -- Evaluation of Unsupervised Learning -- Applications -- Conclusion.
520 _aThis book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field.
650 0 _aTelecommunication.
_910437
650 0 _aComputational intelligence.
_97716
650 0 _aComputer networks .
_931572
650 0 _aPattern recognition systems.
_93953
650 0 _aArtificial intelligence.
_93407
650 0 _aData mining.
_93907
650 1 4 _aCommunications Engineering, Networks.
_931570
650 2 4 _aComputational Intelligence.
_97716
650 2 4 _aComputer Communication Networks.
_963071
650 2 4 _aAutomated Pattern Recognition.
_931568
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aData Mining and Knowledge Discovery.
_963072
700 1 _aCelebi, M. Emre.
_eeditor.
_0(orcid)0000-0002-2721-6317
_1https://orcid.org/0000-0002-2721-6317
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_963073
700 1 _aAydin, Kemal.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_963074
710 2 _aSpringerLink (Online service)
_963075
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319242095
776 0 8 _iPrinted edition:
_z9783319242101
776 0 8 _iPrinted edition:
_z9783319795904
856 4 0 _uhttps://doi.org/10.1007/978-3-319-24211-8
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c81098
_d81098