000 | 07406cam a2200757 i 4500 | ||
---|---|---|---|
001 | on1012849815 | ||
003 | OCoLC | ||
005 | 20220908100133.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 171124s2018 njua ob 001 0 eng d | ||
040 |
_aIDEBK _beng _erda _epn _cIDEBK _dN$T _dEBLCP _dYDX _dCNCGM _dMNW _dMUU _dIDB _dNRC _dINT _dDEGRU _dAU@ _dTSC _dOCLCQ _dWYU _dOCLCQ _dJSTOR _dOCLCQ _dMM9 _dUX1 _dOCLCQ _dIEEEE _dOCLCQ _dOCLCO |
||
066 | _c(S | ||
019 |
_a1162046061 _a1175629450 |
||
020 |
_a1400889030 _q(electronic bk.) |
||
020 | _a9781400889037 | ||
020 |
_z9780691177175 _q(hardcover _qalk. paper) |
||
020 |
_z0691177171 _q(hardcover _qalk. paper) |
||
029 | 1 |
_aAU@ _b000061388128 |
|
029 | 1 |
_aGBVCP _b1011003759 |
|
029 | 1 |
_aAU@ _b000062004912 |
|
029 | 1 |
_aAU@ _b000062577688 |
|
029 | 1 |
_aAU@ _b000065054106 |
|
029 | 1 |
_aAU@ _b000067043333 |
|
035 |
_a(OCoLC)1012849815 _z(OCoLC)1162046061 _z(OCoLC)1175629450 |
||
037 |
_a1050470 _bMIL |
||
037 |
_a22573/ctvc66xk3 _bJSTOR |
||
037 |
_a9452339 _bIEEE |
||
050 | 4 | _aQA9.25 | |
072 | 7 |
_aMAT _x000000 _2bisacsh |
|
072 | 7 |
_aMAT _x015000 _2bisacsh |
|
072 | 7 |
_aMAT _x018000 _2bisacsh |
|
072 | 7 |
_aMAT _x034000 _2bisacsh |
|
072 | 7 |
_aSCI _x034000 _2bisacsh |
|
082 | 0 | 4 |
_a511.3 _223 |
084 |
_aMAT015000 _aMAT000000 _aMAT018000 _aSCI034000 _2bisacsh |
||
049 | _aMAIN | ||
100 | 1 |
_aStillwell, John, _eauthor. _965032 |
|
245 | 1 | 0 |
_aReverse mathematics : _bproofs from the inside out / _cJohn Stillwell. |
264 | 1 |
_aPrinceton : _bPrinceton University Press, _c[2018] |
|
264 | 4 | _c�2018 | |
300 | _a1 online resource (xiii, 182 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 |
_6880-01 _aHistorical introduction -- Classical arithmetization -- Classical analysis -- Computability -- Arithmetization of computation -- Arithmetical comprehension -- Recursive comprehension -- A bigger picture. |
|
520 |
_a"This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to prove a given theorem? Only in the last two hundred years have some of these questions been answered, and only in the last forty years has a systematic approach been developed. In Reverse Mathematics, John Stillwell gives a representative view of this field, emphasizing basic analysis--finding the "right axioms" to prove fundamental theorems--and giving a novel approach to logic. Stillwell introduces reverse mathematics historically, describing the two developments that made reverse mathematics possible, both involving the idea of arithmetization. The first was the nineteenth-century project of arithmetizing analysis, which aimed to define all concepts of analysis in terms of natural numbers and sets of natural numbers. The second was the twentieth-century arithmetization of logic and computation. Thus arithmetic in some sense underlies analysis, logic, and computation. Reverse mathematics exploits this insight by viewing analysis as arithmetic extended by axioms about the existence of infinite sets. Remarkably, only a small number of axioms are needed for reverse mathematics, and, for each basic theorem of analysis, Stillwell finds the "right axiom" to prove it. By using a minimum of mathematical logic in a well-motivated way, Reverse Mathematics will engage advanced undergraduates and all mathematicians interested in the foundations of mathematics."-- _cProvided by publisher |
||
588 | 0 | _aOnline resource; title from electronic title page (EBSCOHost, viewed March 14, 2018). | |
590 |
_aIEEE _bIEEE Xplore Princeton University Press eBooks Library |
||
650 | 0 |
_aReverse mathematics. _965033 |
|
650 | 6 |
_aMath�ematiques �a rebours. _965034 |
|
650 | 7 |
_aMATHEMATICS _xGeneral. _2bisacsh _94635 |
|
650 | 7 |
_aReverse mathematics. _2fast _0(OCoLC)fst01737141 _965033 |
|
655 | 4 |
_aElectronic books. _93294 |
|
776 | 0 | 8 |
_iPrint version: _aStillwell, John. _tReverse mathematics. _dPrinceton, New Jersey : Princeton University Press, [2018] _z9780691177175 _w(DLC) 2017025264 _w(OCoLC)983825003 |
856 | 4 | 0 | _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9452339 |
880 | 0 | 0 |
_6505-01/(S _gMachine generated contents note: _g1. _tHistorical Introduction -- _g1.1. _tEuclid and the Parallel Axiom -- _g1.2. _tSpherical and Non-Euclidean Geometry -- _g1.3. _tVector Geometry -- _g1.4. _tHilbert's Axioms -- _g1.5. _tWell-ordering and the Axiom of Choice -- _g1.6. _tLogic and Computability -- _g2. _tClassical Arithmetization -- _g2.1. _tFrom Natural to Rational Numbers -- _g2.2. _tFrom Rationals to Reals -- _g2.3. _tCompleteness Properties of R -- _g2.4. _tFunctions and Sets -- _g2.5. _tContinuous Functions -- _g2.6. _tPeano Axioms -- _g2.7. _tLanguage of PA -- _g2.8. _tArithmetically Definable Sets -- _g2.9. _tLimits of Arithmetization -- _g3. _tClassical Analysis -- _g3.1. _tLimits -- _g3.2. _tAlgebraic Properties of Limits -- _g3.3. _tContinuity and Intermediate Values -- _g3.4. _tBolzano-Weierstrass Theorem -- _g3.5. _tHeine-Borel Theorem -- _g3.6. _tExtreme Value Theorem -- _g3.7. _tUniform Continuity -- _g3.8. _tCantor Set -- _g3.9. _tTrees in Analysis -- _g4. _tComputability -- _g4.1. _tComputability and Church's Thesis -- _g4.2. _tHalting Problem -- _g4.3. _tComputably Enumerable Sets -- _g4.4. _tComputable Sequences in Analysis -- _g4.5. _tComputable Tree with No Computable Path -- _g4.6. _tComputability and Incompleteness -- _g4.7. _tComputability and Analysis -- _g5. _tArithmetization of Computation -- _g5.1. _tFormal Systems -- _g5.2. _tSmullyan's Elementary Formal Systems -- _g5.3. _tNotations for Positive Integers -- _g5.4. _tTuring's Analysis of Computation -- _g5.5. _tOperations on EFS-Generated Sets -- _g5.6. _tGenerating (SV(B01 Sets -- _g5.7. _tEFS for (SV(B01 Relations -- _g5.8. _tArithmetizing Elementary Formal Systems -- _g5.9. _tArithmetizing Computable Enumeration -- _g5.10. _tArithmetizing Computable Analysis -- _g6. _tArithmetical Comprehension -- _g6.1. _tAxiom System ACA0 -- _g6.2. _t(SV(B01 and Arithmetical Comprehension -- _g6.3. _tCompleteness Properties in ACA0 -- _g6.4. _tArithmetization of Trees -- _g6.5. _tKonig Infinity Lemma -- _g6.6. _tRamsey Theory -- _g6.7. _tSome Results from Logic -- _g6.8. _tPeano Arithmetic in ACA0 -- _g7. _tRecursive Comprehension -- _g7.1. _tAxiom System RCA0 -- _g7.2. _tReal Numbers and Continuous Functions -- _g7.3. _tIntermediate Value Theorem -- _g7.4. _tCantor Set Revisited -- _g7.5. _tFrom Heine-Borel to Weak Konig Lemma -- _g7.6. _tFrom Weak Konig Lemma to Heine-Borel -- _g7.7. _tUniform Continuity -- _g7.8. _tFrom Weak Konig to Extreme Value -- _g7.9. _tTheorems of WKL0 -- _g7.10. _tWKL0, ACA0, and Beyond -- _g8. _tBigger Picture -- _g8.1. _tConstructive Mathematics -- _g8.2. _tPredicate Logic -- _g8.3. _tVarieties of Incompleteness -- _g8.4. _tComputability -- _g8.5. _tSet Theory -- _g8.6. _tConcepts of "Depth." |
938 |
_aDe Gruyter _bDEGR _n9781400889037 |
||
938 |
_aYBP Library Services _bYANK _n14643228 |
||
938 |
_aEBL - Ebook Library _bEBLB _nEBL5199840 |
||
938 |
_aProQuest MyiLibrary Digital eBook Collection _bIDEB _ncis39138779 |
||
938 |
_aEBSCOhost _bEBSC _n1550094 |
||
942 | _cEBK | ||
994 |
_a92 _bINTKS |
||
999 |
_c81391 _d81391 |