000 07406cam a2200757 i 4500
001 on1012849815
003 OCoLC
005 20220908100133.0
006 m o d
007 cr |||||||||||
008 171124s2018 njua ob 001 0 eng d
040 _aIDEBK
_beng
_erda
_epn
_cIDEBK
_dN$T
_dEBLCP
_dYDX
_dCNCGM
_dMNW
_dMUU
_dIDB
_dNRC
_dINT
_dDEGRU
_dAU@
_dTSC
_dOCLCQ
_dWYU
_dOCLCQ
_dJSTOR
_dOCLCQ
_dMM9
_dUX1
_dOCLCQ
_dIEEEE
_dOCLCQ
_dOCLCO
066 _c(S
019 _a1162046061
_a1175629450
020 _a1400889030
_q(electronic bk.)
020 _a9781400889037
020 _z9780691177175
_q(hardcover
_qalk. paper)
020 _z0691177171
_q(hardcover
_qalk. paper)
029 1 _aAU@
_b000061388128
029 1 _aGBVCP
_b1011003759
029 1 _aAU@
_b000062004912
029 1 _aAU@
_b000062577688
029 1 _aAU@
_b000065054106
029 1 _aAU@
_b000067043333
035 _a(OCoLC)1012849815
_z(OCoLC)1162046061
_z(OCoLC)1175629450
037 _a1050470
_bMIL
037 _a22573/ctvc66xk3
_bJSTOR
037 _a9452339
_bIEEE
050 4 _aQA9.25
072 7 _aMAT
_x000000
_2bisacsh
072 7 _aMAT
_x015000
_2bisacsh
072 7 _aMAT
_x018000
_2bisacsh
072 7 _aMAT
_x034000
_2bisacsh
072 7 _aSCI
_x034000
_2bisacsh
082 0 4 _a511.3
_223
084 _aMAT015000
_aMAT000000
_aMAT018000
_aSCI034000
_2bisacsh
049 _aMAIN
100 1 _aStillwell, John,
_eauthor.
_965032
245 1 0 _aReverse mathematics :
_bproofs from the inside out /
_cJohn Stillwell.
264 1 _aPrinceton :
_bPrinceton University Press,
_c[2018]
264 4 _c�2018
300 _a1 online resource (xiii, 182 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _6880-01
_aHistorical introduction -- Classical arithmetization -- Classical analysis -- Computability -- Arithmetization of computation -- Arithmetical comprehension -- Recursive comprehension -- A bigger picture.
520 _a"This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to prove a given theorem? Only in the last two hundred years have some of these questions been answered, and only in the last forty years has a systematic approach been developed. In Reverse Mathematics, John Stillwell gives a representative view of this field, emphasizing basic analysis--finding the "right axioms" to prove fundamental theorems--and giving a novel approach to logic. Stillwell introduces reverse mathematics historically, describing the two developments that made reverse mathematics possible, both involving the idea of arithmetization. The first was the nineteenth-century project of arithmetizing analysis, which aimed to define all concepts of analysis in terms of natural numbers and sets of natural numbers. The second was the twentieth-century arithmetization of logic and computation. Thus arithmetic in some sense underlies analysis, logic, and computation. Reverse mathematics exploits this insight by viewing analysis as arithmetic extended by axioms about the existence of infinite sets. Remarkably, only a small number of axioms are needed for reverse mathematics, and, for each basic theorem of analysis, Stillwell finds the "right axiom" to prove it. By using a minimum of mathematical logic in a well-motivated way, Reverse Mathematics will engage advanced undergraduates and all mathematicians interested in the foundations of mathematics."--
_cProvided by publisher
588 0 _aOnline resource; title from electronic title page (EBSCOHost, viewed March 14, 2018).
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aReverse mathematics.
_965033
650 6 _aMath�ematiques �a rebours.
_965034
650 7 _aMATHEMATICS
_xGeneral.
_2bisacsh
_94635
650 7 _aReverse mathematics.
_2fast
_0(OCoLC)fst01737141
_965033
655 4 _aElectronic books.
_93294
776 0 8 _iPrint version:
_aStillwell, John.
_tReverse mathematics.
_dPrinceton, New Jersey : Princeton University Press, [2018]
_z9780691177175
_w(DLC) 2017025264
_w(OCoLC)983825003
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9452339
880 0 0 _6505-01/(S
_gMachine generated contents note:
_g1.
_tHistorical Introduction --
_g1.1.
_tEuclid and the Parallel Axiom --
_g1.2.
_tSpherical and Non-Euclidean Geometry --
_g1.3.
_tVector Geometry --
_g1.4.
_tHilbert's Axioms --
_g1.5.
_tWell-ordering and the Axiom of Choice --
_g1.6.
_tLogic and Computability --
_g2.
_tClassical Arithmetization --
_g2.1.
_tFrom Natural to Rational Numbers --
_g2.2.
_tFrom Rationals to Reals --
_g2.3.
_tCompleteness Properties of R --
_g2.4.
_tFunctions and Sets --
_g2.5.
_tContinuous Functions --
_g2.6.
_tPeano Axioms --
_g2.7.
_tLanguage of PA --
_g2.8.
_tArithmetically Definable Sets --
_g2.9.
_tLimits of Arithmetization --
_g3.
_tClassical Analysis --
_g3.1.
_tLimits --
_g3.2.
_tAlgebraic Properties of Limits --
_g3.3.
_tContinuity and Intermediate Values --
_g3.4.
_tBolzano-Weierstrass Theorem --
_g3.5.
_tHeine-Borel Theorem --
_g3.6.
_tExtreme Value Theorem --
_g3.7.
_tUniform Continuity --
_g3.8.
_tCantor Set --
_g3.9.
_tTrees in Analysis --
_g4.
_tComputability --
_g4.1.
_tComputability and Church's Thesis --
_g4.2.
_tHalting Problem --
_g4.3.
_tComputably Enumerable Sets --
_g4.4.
_tComputable Sequences in Analysis --
_g4.5.
_tComputable Tree with No Computable Path --
_g4.6.
_tComputability and Incompleteness --
_g4.7.
_tComputability and Analysis --
_g5.
_tArithmetization of Computation --
_g5.1.
_tFormal Systems --
_g5.2.
_tSmullyan's Elementary Formal Systems --
_g5.3.
_tNotations for Positive Integers --
_g5.4.
_tTuring's Analysis of Computation --
_g5.5.
_tOperations on EFS-Generated Sets --
_g5.6.
_tGenerating (SV(B01 Sets --
_g5.7.
_tEFS for (SV(B01 Relations --
_g5.8.
_tArithmetizing Elementary Formal Systems --
_g5.9.
_tArithmetizing Computable Enumeration --
_g5.10.
_tArithmetizing Computable Analysis --
_g6.
_tArithmetical Comprehension --
_g6.1.
_tAxiom System ACA0 --
_g6.2.
_t(SV(B01 and Arithmetical Comprehension --
_g6.3.
_tCompleteness Properties in ACA0 --
_g6.4.
_tArithmetization of Trees --
_g6.5.
_tKonig Infinity Lemma --
_g6.6.
_tRamsey Theory --
_g6.7.
_tSome Results from Logic --
_g6.8.
_tPeano Arithmetic in ACA0 --
_g7.
_tRecursive Comprehension --
_g7.1.
_tAxiom System RCA0 --
_g7.2.
_tReal Numbers and Continuous Functions --
_g7.3.
_tIntermediate Value Theorem --
_g7.4.
_tCantor Set Revisited --
_g7.5.
_tFrom Heine-Borel to Weak Konig Lemma --
_g7.6.
_tFrom Weak Konig Lemma to Heine-Borel --
_g7.7.
_tUniform Continuity --
_g7.8.
_tFrom Weak Konig to Extreme Value --
_g7.9.
_tTheorems of WKL0 --
_g7.10.
_tWKL0, ACA0, and Beyond --
_g8.
_tBigger Picture --
_g8.1.
_tConstructive Mathematics --
_g8.2.
_tPredicate Logic --
_g8.3.
_tVarieties of Incompleteness --
_g8.4.
_tComputability --
_g8.5.
_tSet Theory --
_g8.6.
_tConcepts of "Depth."
938 _aDe Gruyter
_bDEGR
_n9781400889037
938 _aYBP Library Services
_bYANK
_n14643228
938 _aEBL - Ebook Library
_bEBLB
_nEBL5199840
938 _aProQuest MyiLibrary Digital eBook Collection
_bIDEB
_ncis39138779
938 _aEBSCOhost
_bEBSC
_n1550094
942 _cEBK
994 _a92
_bINTKS
999 _c81391
_d81391