000 05919cam a2200553Mu 4500
001 on1224361222
003 OCoLC
005 20220908100224.0
006 m o d
007 cr |||||||||||
008 201128s2020 nju o ||| 0 eng d
040 _aEBLCP
_beng
_cEBLCP
_dOCLCO
_dUKAHL
_dJSTOR
_dEBLCP
_dOCLCO
_dOCLCF
_dN$T
_dIEEEE
_dOCLCO
020 _a9780691218526
_q(electronic bk.)
020 _a0691218528
_q(electronic bk.)
029 1 _aAU@
_b000068507184
035 _a(OCoLC)1224361222
037 _a22573/ctv15qs7m5
_bJSTOR
037 _a9519791
_bIEEE
050 4 _aQB843.B55
082 0 4 _a523.8875
_223
049 _aMAIN
100 1 _aSzeftel, J�er�emie.
_965722
245 1 0 _aGlobal Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations
_h[electronic resource] :
_b(ams-210).
260 _aPrinceton :
_bPrinceton University Press,
_c2020.
300 _a1 online resource (859 p.).
490 1 _aAnnals of Mathematics Studies ;
_vv.398
500 _aDescription based upon print version of record.
505 0 _aCover -- Title -- Copyright -- Contents -- List of Figures -- Acknowledgments -- 1 Introduction -- 1.1 Basic notions in general relativity -- 1.1.1 Spacetime and causality -- 1.1.2 The initial value formulation for Einstein equations -- 1.1.3 Special solutions -- 1.1.4 Stability of Minkowski space -- 1.1.5 Cosmic censorship -- 1.2 Stability of Kerr conjecture -- 1.2.1 Formal mode analysis -- 1.2.2 Vectorfield method -- 1.3 Nonlinear stability of Schwarzschild under polarized perturbations -- 1.3.1 Bare-bones version of our theorem -- 1.3.2 Linear stability of the Schwarzschild spacetime
505 8 _a1.3.3 Main ideas in the proof of Theorem 1.6 -- 1.3.4 Beyond polarization -- 1.3.5 Note added in proof -- 1.4 Organization -- 2 Preliminaries -- 2.1 Axially symmetric polarized spacetimes -- 2.1.1 Axial symmetry -- 2.1.2 Z-frames -- 2.1.3 Axis of symmetry -- 2.1.4 Z-polarized S-surfaces -- 2.1.5 Invariant S-foliations -- 2.1.6 Schwarzschild spacetime -- 2.2 Main equations -- 2.2.1 Main equations for general S-foliations -- 2.2.2 Null Bianchi identities -- 2.2.3 Hawking mass -- 2.2.4 Outgoing geodesic foliations -- 2.2.5 Additional equations -- 2.2.6 Ingoing geodesic foliation
505 8 _a3.2.2 Main norms in ^(int)M -- 3.2.3 Combined norms -- 3.2.4 Initial layer norm -- 3.3 Main theorem -- 3.3.1 Smallness constants -- 3.3.2 Statement of the main theorem -- 3.4 Bootstrap assumptions and first consequences -- 3.4.1 Main bootstrap assumptions -- 3.4.2 Control of the initial data -- 3.4.3 Control of averages and of the Hawking mass -- 3.4.4 Control of coordinates system -- 3.4.5 Pointwise bounds for higher order derivatives -- 3.4.6 Construction of a second frame in ^(ext)M -- 3.5 Global null frames -- 3.5.1 Extension of frames -- 3.5.2 Construction of the first global frame
505 8 _a3.5.3 Construction of the second global frame -- 3.6 Proof of the main theorem -- 3.6.1 Main intermediate results -- 3.6.2 End of the proof of the main theorem -- 3.6.3 Conclusions -- 3.7 The general covariant modulation procedure -- 3.7.1 Spacetime assumptions for the GCM procedure -- 3.7.2 Deformations of surfaces -- 3.7.3 Adapted frame transformations -- 3.7.4 GCM results -- 3.7.5 Main ideas -- 3.8 Overview of the proof of Theorems M0-M8 -- 3.8.1 Discussion of Theorem M0 -- 3.8.2 Discussion of Theorem M1 -- 3.8.3 Discussion of Theorem M2 -- 3.8.4 Discussion of Theorem M3
520 _aEssential mathematical insights into one of the most important and challenging open problems in general relativity—the stability of black holes One of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. In this book, Sergiu Klainerman and J�er�emie Szeftel take a first important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes—or Schwarzschild spacetimes—under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, Klainerman and Szeftel introduce a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, this book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture.
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aSchwarzschild black holes.
_965723
650 0 _aPerturbation (Mathematics)
_920231
650 6 _aPerturbation (Math�ematiques)
_963699
650 7 _aPerturbation (Mathematics)
_2fast
_0(OCoLC)fst01058905
_920231
650 7 _aSchwarzschild black holes.
_2fast
_0(OCoLC)fst01749023
_965723
655 4 _aElectronic books.
_93294
700 1 _aKlainerman, Sergiu.
_965724
776 0 8 _iPrint version:
_aSzeftel, J�er�emie
_tGlobal Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations : (ams-210)
_dPrinceton : Princeton University Press,c2020
_z9780691212432
830 0 _aAnnals of mathematics studies.
_965725
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9519791
938 _aAskews and Holts Library Services
_bASKH
_nAH37884752
938 _aProQuest Ebook Central
_bEBLB
_nEBL6403713
938 _aEBSCOhost
_bEBSC
_n2583264
942 _cEBK
994 _a92
_bINTKS
999 _c81502
_d81502