000 | 10106cam a2200721 i 4500 | ||
---|---|---|---|
001 | on1231563353 | ||
003 | OCoLC | ||
005 | 20220908100228.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 210115s2000 njua ob 001 0 eng d | ||
010 | _a 2021694870 | ||
040 |
_aJSTOR _beng _erda _epn _cJSTOR _dOCLCO _dEBLCP _dOCLCO _dUKAHL _dIEEEE _dOCLCO _dOCLCQ _dOCLCO _dDLC _dFAU _dOCLCO _dLUU |
||
019 | _a1227392708 | ||
020 |
_a9780691223377 _q(electronic bk.) |
||
020 |
_a0691223378 _q(electronic bk.) |
||
020 | _z0691026432 | ||
020 | _z9780691026435 | ||
029 | 1 |
_aAU@ _b000068547967 |
|
035 |
_a(OCoLC)1231563353 _z(OCoLC)1227392708 |
||
037 |
_a22573/ctv1826hdk _bJSTOR |
||
037 |
_a9453275 _bIEEE |
||
050 | 4 |
_aQA927 _b.D32 2000eb |
|
072 | 7 |
_aMAT _x003000 _2bisacsh |
|
082 | 0 | 4 |
_a530.12/4 _222 |
084 |
_aSK 560 _2rvk |
||
084 |
_aUH 3000 _2rvk |
||
084 |
_aPHY 013f _2stub |
||
049 | _aMAIN | ||
100 | 1 |
_aDavis, Julian L. _965785 |
|
245 | 1 | 0 |
_aMathematics of wave propagation / _cJulian L. Davis. |
264 | 1 |
_aPrinceton, NJ : _bPrinceton University Press, _c2000. |
|
300 |
_a1 online resource (xv, 395 pages) : _billustrations |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references (pages 389-390) and index. | ||
505 | 0 | 0 |
_gChapter 1 _tPhysics of Propagating Waves _g3 -- _tDiscrete Wave-Propagating Systems _g3 -- _tApproximation of Stress Wave Propagation in a Bar by a Finite System of Mass-Spring Models _g4 -- _tLimiting Form of a Continuous Bar _g5 -- _tWave Equation for a Bar _g5 -- _tTransverse Oscillations of a String _g9 -- _tSpeed of a Transverse Wave in a Siting _g10 -- _tTraveling Waves in General _g11 -- _tSound Wave Propagation in a Tube _g16 -- _tSuperposition Principle _g19 -- _tSinusoidal Waves _g19 -- _tInterference Phenomena _g21 -- _tReflection of Light Waves _g25 -- _tReflection of Waves in a String _g27 -- _tSound Waves _g29 -- _tDoppler Effect _g33 -- _tDispersion and Group Velocity _g36 -- _gChapter 2 _tPartial Differential Equations of Wave Propagation _g41 -- _tTypes of Partial Differential Equations _g41 -- _tGeometric Nature of the PDEs of Wave Phenomena _g42 -- _tDirectional Derivatives _g42 -- _tCauchy Initial Value Problem _g44 -- _tParametric Representation _g49 -- _tWave Equation Equivalent to Two First-Order PDEs _g51 -- _tCharacteristic Equations for First-Order PDEs _g55 -- _tGeneral Treatment of Linear PDEs by Characteristic Theory _g57 -- _tAnother Method of Characteristics for Second-Order PDEs _g61 -- _tGeometric Interpretation of Quasilinear PDEs _g63 -- _tIntegral Surfaces _g65 -- _tNonlinear Case _g67 -- _tCanonical Form of a Second-Order PDE _g70 -- _tRiemann's Method of Integration _g73 -- _gChapter 3 _tWave Equation _g85 -- _gPart I _tOne-Dimensional Wave Equation _g85 -- _tFactorization of the Wave Equation and Characteristic Curves _g85 -- _tVibrating String as a Combined IV and B V Problem _g90 -- _tD'Alembert's Solution to the IV Problem _g97 -- _tDomain of Dependence and Range of Influence _g101 -- _tCauchy IV Problem Revisited _g102 -- _tSolution of Wave Propagation Problems by Laplace Transforms _g105 -- _tLaplace Transforms _g108 -- _tApplications to the Wave Equation _g111 -- _tNonhomogeneous Wave Equation _g116 -- _tWave Propagation through Media with Different Velocities _g120 -- _tElectrical Transmission Line _g122 -- _gPart II _tWave Equation in two and Three Dimensions _g125 -- _tTwo-Dimensional Wave Equation _g125 -- _tReduced Wave Equation in Two Dimensions _g126 -- _tEigenvalues Must Be Negative _g127 -- _tRectangular Membrane _g127 -- _tCircular Membrane _g131 -- _tThree-Dimensional Wave Equation _g135 -- _gChapter 4 _tWave Propagation in Fluids _g145 -- _gPart I _tInviscid Fluids _g145 -- _tLagrangian Representation of One-Dimensional Compressible Gas Flow _g146 -- _tEulerian Representation of a One-Dimensional Gas _g149 -- _tSolution by the Method of Characteristics: One-Dimensional Compressible Gas _g151 -- _tTwo-Dimensional Steady Flow _g157 -- _tBernoulli's Law _g159 -- _tMethod of Characteristics Applied to Two-Dimensional Steady Flow _g161 -- _tSupersonic Velocity Potential _g163 -- _tHodograph Transformation _g163 -- _tShock Wave Phenomena _g169 -- _gPart II _tViscous Fluids _g183 -- _tElementary Discussion of Viscosity _g183 -- _tConservation Laws _g185 -- _tBoundary Conditions and Boundary Layer _g190 -- _tEnerg Dissipation in a Viscous Fluid _g191 -- _tWave Propagation in a Viscous Fluid _g193 -- _tOscillating Body of Arbitrary Shape _g196 -- _tSimilarity Considerations and Dimensionless Parameters; Reynolds'Law _g197 -- _tPoiseuille Flow _g199 -- _tStokes'Flow _g201 -- _tOseen Approximation _g208 -- _gChapter 5 _tStress Waves in Elastic Solids _g213 -- _tFundamentals of Elasticity _g214 -- _tEquations of Motion for the Stress _g223 -- _tNavier Equations of Motion for the Displacement _g224 -- _tPropagation of Plane Elastic Waves _g227 -- _tGeneral Decomposition of Elastic Waves _g228 -- _tCharacteristic Surfaces for Planar Waves _g229 -- _tTime-Harmonic Solutions and Reduced Wave Equations _g230 -- _tSpherically Symmetric Waves _g232 -- _tLongitudinal Waves in a Bar _g234 -- _tCurvilinear Orthogonal Coordinates _g237 -- _tNavier Equations in Cylindrical Coordinates _g239 -- _tRadially Symmetric Waves _g240 -- _tWaves Propagated Over the Surface of an Elastic Body _g243 -- _gChapter 6 _tStress Waves in Viscoelastic Solids _g250 -- _tInternal Ftiction _g251 -- _tDiscrete Viscoelastic Models _g252 -- _tContinuous Marwell Model _g260 -- _tContinuous Voigt Model _g263 -- _tThree-Dimensional VE Constitutive Equations _g264 -- _tEquations of Motion for a VE Material _g265 -- _tOne-Dimensional Wave Propagation in VE Media _g266 -- _tRadially Symmetric Waves for a VE Bar _g270 -- _tElectromechanicalAnalogy _g271 -- _gChapter 7 _tWave Propagation in Thermoelastic Media _g282 -- _tDuhamel-Neumann Law _g282 -- _tEquations of Motion _g285 -- _tPlane Harmonic Waves _g287 -- _tThree-Dimensional Thermal Waves; Generalized Navier Equation _g293 -- _gChapter 8 _tWater Waves _g297 -- _tIrrotational, Incompressible, Inviscid Flow; Velocity Potential and Equipotential Surfaces _g297 -- _tEuler's Equations _g299 -- _tTwo-Dimensional Fluid Flow _g300 -- _tComplec Variable Treatment _g302 -- _tVortex Motion _g309 -- _tSmall-Amplitude Gravity Waves _g311 -- _tWater Waves in a Straight Canal _g311 -- _tKinematics of the Free Surface _g316 -- _tVertical Acceleration _g317 -- _tStanding Waves _g319 -- _tTwo-Dimensional Waves of Finite Depth _g321 -- _tBoundary Conditions _g322 -- _tFormulation of a Typical Surface Wave Problem _g324 -- _tExample of Instability _g325 -- _tApproximation Aeories _g327 -- _tTidal Waves _g337 -- _gChapter 9 _tVariational Methods in Wave Propagation _g344 -- _tIntroduction; Fermat's PKnciple _g344 -- _tCalculus of Variations; Euler's Equation _g345 -- _tConfiguration Space _g349 -- _tCnetic and Potential Eneigies _g350 -- _tHamilton's Variational Principle _g350 -- _tPKnciple of Virtual Work _g352 -- _tTransformation to Generalized Coordinates _g354 -- _tRayleigh's Dissipation Function _g357 -- _tHamilton's Equations of Motion _g359 -- _tCyclic Coordinates _g362 -- _tHamilton-Jacobi Theory _g364 -- _tExtension of W to 2 n Degrees of Freedom _g370 -- _tH-J Aeory and Wave P[similar]vpagation _g372 -- _tQuantum Mechanics _g376 -- _tAn Analog between Geometric Optics and Classical Mechanics _g377 -- _tAsymptotic Theory of Wave Propagation _g380 -- _gAppendix _tPrinciple of Least Action _g384. |
588 | 0 | _aPrint version record. | |
520 | _aEarthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves. | ||
590 |
_aIEEE _bIEEE Xplore Princeton University Press eBooks Library |
||
600 | 1 | 7 |
_aWelle, ... _2gnd _965786 |
650 | 0 |
_aWave-motion, Theory of. _911103 |
|
650 | 6 |
_aTh�eorie du mouvement ondulatoire. _963773 |
|
650 | 7 |
_aMATHEMATICS _xApplied. _2bisacsh _95811 |
|
650 | 7 |
_aWave-motion, Theory of. _2fast _0(OCoLC)fst01172888 _911103 |
|
650 | 7 |
_aMathematische Physik _2gnd _965591 |
|
650 | 7 |
_aWellenausbreitung _2gnd _963776 |
|
650 | 7 |
_aWelle _2gnd _965787 |
|
650 | 7 |
_aWAVES. _2nasat _912883 |
|
650 | 7 |
_aWAVE PROPAGATION. _2nasat _965788 |
|
650 | 7 |
_aDIFFERENTIAL EQUATIONS. _2nasat _965789 |
|
650 | 7 |
_aWAVE EQUATIONS. _2nasat _965790 |
|
650 | 7 |
_aVISCOUS FLUIDS. _2nasat _92906 |
|
650 | 0 | 7 |
_aWelle. _2swd _965787 |
655 | 4 |
_aElectronic books. _93294 |
|
776 | 0 | 8 |
_iPrint version: _aDavis, Julian L. _tMathematics of wave propagation. _dPrinceton, NJ : Princeton University Press, 2000 _z0691026432 _w(DLC) 99044938 _w(OCoLC)42290530 |
856 | 4 | 0 | _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9453275 |
938 |
_aAskews and Holts Library Services _bASKH _nAH38216096 |
||
938 |
_aProQuest Ebook Central _bEBLB _nEBL6425528 |
||
942 | _cEBK | ||
994 |
_a92 _bINTKS |
||
999 |
_c81510 _d81510 |