000 10106cam a2200721 i 4500
001 on1231563353
003 OCoLC
005 20220908100228.0
006 m o d
007 cr cnu---unuuu
008 210115s2000 njua ob 001 0 eng d
010 _a 2021694870
040 _aJSTOR
_beng
_erda
_epn
_cJSTOR
_dOCLCO
_dEBLCP
_dOCLCO
_dUKAHL
_dIEEEE
_dOCLCO
_dOCLCQ
_dOCLCO
_dDLC
_dFAU
_dOCLCO
_dLUU
019 _a1227392708
020 _a9780691223377
_q(electronic bk.)
020 _a0691223378
_q(electronic bk.)
020 _z0691026432
020 _z9780691026435
029 1 _aAU@
_b000068547967
035 _a(OCoLC)1231563353
_z(OCoLC)1227392708
037 _a22573/ctv1826hdk
_bJSTOR
037 _a9453275
_bIEEE
050 4 _aQA927
_b.D32 2000eb
072 7 _aMAT
_x003000
_2bisacsh
082 0 4 _a530.12/4
_222
084 _aSK 560
_2rvk
084 _aUH 3000
_2rvk
084 _aPHY 013f
_2stub
049 _aMAIN
100 1 _aDavis, Julian L.
_965785
245 1 0 _aMathematics of wave propagation /
_cJulian L. Davis.
264 1 _aPrinceton, NJ :
_bPrinceton University Press,
_c2000.
300 _a1 online resource (xv, 395 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references (pages 389-390) and index.
505 0 0 _gChapter 1
_tPhysics of Propagating Waves
_g3 --
_tDiscrete Wave-Propagating Systems
_g3 --
_tApproximation of Stress Wave Propagation in a Bar by a Finite System of Mass-Spring Models
_g4 --
_tLimiting Form of a Continuous Bar
_g5 --
_tWave Equation for a Bar
_g5 --
_tTransverse Oscillations of a String
_g9 --
_tSpeed of a Transverse Wave in a Siting
_g10 --
_tTraveling Waves in General
_g11 --
_tSound Wave Propagation in a Tube
_g16 --
_tSuperposition Principle
_g19 --
_tSinusoidal Waves
_g19 --
_tInterference Phenomena
_g21 --
_tReflection of Light Waves
_g25 --
_tReflection of Waves in a String
_g27 --
_tSound Waves
_g29 --
_tDoppler Effect
_g33 --
_tDispersion and Group Velocity
_g36 --
_gChapter 2
_tPartial Differential Equations of Wave Propagation
_g41 --
_tTypes of Partial Differential Equations
_g41 --
_tGeometric Nature of the PDEs of Wave Phenomena
_g42 --
_tDirectional Derivatives
_g42 --
_tCauchy Initial Value Problem
_g44 --
_tParametric Representation
_g49 --
_tWave Equation Equivalent to Two First-Order PDEs
_g51 --
_tCharacteristic Equations for First-Order PDEs
_g55 --
_tGeneral Treatment of Linear PDEs by Characteristic Theory
_g57 --
_tAnother Method of Characteristics for Second-Order PDEs
_g61 --
_tGeometric Interpretation of Quasilinear PDEs
_g63 --
_tIntegral Surfaces
_g65 --
_tNonlinear Case
_g67 --
_tCanonical Form of a Second-Order PDE
_g70 --
_tRiemann's Method of Integration
_g73 --
_gChapter 3
_tWave Equation
_g85 --
_gPart I
_tOne-Dimensional Wave Equation
_g85 --
_tFactorization of the Wave Equation and Characteristic Curves
_g85 --
_tVibrating String as a Combined IV and B V Problem
_g90 --
_tD'Alembert's Solution to the IV Problem
_g97 --
_tDomain of Dependence and Range of Influence
_g101 --
_tCauchy IV Problem Revisited
_g102 --
_tSolution of Wave Propagation Problems by Laplace Transforms
_g105 --
_tLaplace Transforms
_g108 --
_tApplications to the Wave Equation
_g111 --
_tNonhomogeneous Wave Equation
_g116 --
_tWave Propagation through Media with Different Velocities
_g120 --
_tElectrical Transmission Line
_g122 --
_gPart II
_tWave Equation in two and Three Dimensions
_g125 --
_tTwo-Dimensional Wave Equation
_g125 --
_tReduced Wave Equation in Two Dimensions
_g126 --
_tEigenvalues Must Be Negative
_g127 --
_tRectangular Membrane
_g127 --
_tCircular Membrane
_g131 --
_tThree-Dimensional Wave Equation
_g135 --
_gChapter 4
_tWave Propagation in Fluids
_g145 --
_gPart I
_tInviscid Fluids
_g145 --
_tLagrangian Representation of One-Dimensional Compressible Gas Flow
_g146 --
_tEulerian Representation of a One-Dimensional Gas
_g149 --
_tSolution by the Method of Characteristics: One-Dimensional Compressible Gas
_g151 --
_tTwo-Dimensional Steady Flow
_g157 --
_tBernoulli's Law
_g159 --
_tMethod of Characteristics Applied to Two-Dimensional Steady Flow
_g161 --
_tSupersonic Velocity Potential
_g163 --
_tHodograph Transformation
_g163 --
_tShock Wave Phenomena
_g169 --
_gPart II
_tViscous Fluids
_g183 --
_tElementary Discussion of Viscosity
_g183 --
_tConservation Laws
_g185 --
_tBoundary Conditions and Boundary Layer
_g190 --
_tEnerg Dissipation in a Viscous Fluid
_g191 --
_tWave Propagation in a Viscous Fluid
_g193 --
_tOscillating Body of Arbitrary Shape
_g196 --
_tSimilarity Considerations and Dimensionless Parameters; Reynolds'Law
_g197 --
_tPoiseuille Flow
_g199 --
_tStokes'Flow
_g201 --
_tOseen Approximation
_g208 --
_gChapter 5
_tStress Waves in Elastic Solids
_g213 --
_tFundamentals of Elasticity
_g214 --
_tEquations of Motion for the Stress
_g223 --
_tNavier Equations of Motion for the Displacement
_g224 --
_tPropagation of Plane Elastic Waves
_g227 --
_tGeneral Decomposition of Elastic Waves
_g228 --
_tCharacteristic Surfaces for Planar Waves
_g229 --
_tTime-Harmonic Solutions and Reduced Wave Equations
_g230 --
_tSpherically Symmetric Waves
_g232 --
_tLongitudinal Waves in a Bar
_g234 --
_tCurvilinear Orthogonal Coordinates
_g237 --
_tNavier Equations in Cylindrical Coordinates
_g239 --
_tRadially Symmetric Waves
_g240 --
_tWaves Propagated Over the Surface of an Elastic Body
_g243 --
_gChapter 6
_tStress Waves in Viscoelastic Solids
_g250 --
_tInternal Ftiction
_g251 --
_tDiscrete Viscoelastic Models
_g252 --
_tContinuous Marwell Model
_g260 --
_tContinuous Voigt Model
_g263 --
_tThree-Dimensional VE Constitutive Equations
_g264 --
_tEquations of Motion for a VE Material
_g265 --
_tOne-Dimensional Wave Propagation in VE Media
_g266 --
_tRadially Symmetric Waves for a VE Bar
_g270 --
_tElectromechanicalAnalogy
_g271 --
_gChapter 7
_tWave Propagation in Thermoelastic Media
_g282 --
_tDuhamel-Neumann Law
_g282 --
_tEquations of Motion
_g285 --
_tPlane Harmonic Waves
_g287 --
_tThree-Dimensional Thermal Waves; Generalized Navier Equation
_g293 --
_gChapter 8
_tWater Waves
_g297 --
_tIrrotational, Incompressible, Inviscid Flow; Velocity Potential and Equipotential Surfaces
_g297 --
_tEuler's Equations
_g299 --
_tTwo-Dimensional Fluid Flow
_g300 --
_tComplec Variable Treatment
_g302 --
_tVortex Motion
_g309 --
_tSmall-Amplitude Gravity Waves
_g311 --
_tWater Waves in a Straight Canal
_g311 --
_tKinematics of the Free Surface
_g316 --
_tVertical Acceleration
_g317 --
_tStanding Waves
_g319 --
_tTwo-Dimensional Waves of Finite Depth
_g321 --
_tBoundary Conditions
_g322 --
_tFormulation of a Typical Surface Wave Problem
_g324 --
_tExample of Instability
_g325 --
_tApproximation Aeories
_g327 --
_tTidal Waves
_g337 --
_gChapter 9
_tVariational Methods in Wave Propagation
_g344 --
_tIntroduction; Fermat's PKnciple
_g344 --
_tCalculus of Variations; Euler's Equation
_g345 --
_tConfiguration Space
_g349 --
_tCnetic and Potential Eneigies
_g350 --
_tHamilton's Variational Principle
_g350 --
_tPKnciple of Virtual Work
_g352 --
_tTransformation to Generalized Coordinates
_g354 --
_tRayleigh's Dissipation Function
_g357 --
_tHamilton's Equations of Motion
_g359 --
_tCyclic Coordinates
_g362 --
_tHamilton-Jacobi Theory
_g364 --
_tExtension of W to 2 n Degrees of Freedom
_g370 --
_tH-J Aeory and Wave P[similar]vpagation
_g372 --
_tQuantum Mechanics
_g376 --
_tAn Analog between Geometric Optics and Classical Mechanics
_g377 --
_tAsymptotic Theory of Wave Propagation
_g380 --
_gAppendix
_tPrinciple of Least Action
_g384.
588 0 _aPrint version record.
520 _aEarthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
600 1 7 _aWelle, ...
_2gnd
_965786
650 0 _aWave-motion, Theory of.
_911103
650 6 _aTh�eorie du mouvement ondulatoire.
_963773
650 7 _aMATHEMATICS
_xApplied.
_2bisacsh
_95811
650 7 _aWave-motion, Theory of.
_2fast
_0(OCoLC)fst01172888
_911103
650 7 _aMathematische Physik
_2gnd
_965591
650 7 _aWellenausbreitung
_2gnd
_963776
650 7 _aWelle
_2gnd
_965787
650 7 _aWAVES.
_2nasat
_912883
650 7 _aWAVE PROPAGATION.
_2nasat
_965788
650 7 _aDIFFERENTIAL EQUATIONS.
_2nasat
_965789
650 7 _aWAVE EQUATIONS.
_2nasat
_965790
650 7 _aVISCOUS FLUIDS.
_2nasat
_92906
650 0 7 _aWelle.
_2swd
_965787
655 4 _aElectronic books.
_93294
776 0 8 _iPrint version:
_aDavis, Julian L.
_tMathematics of wave propagation.
_dPrinceton, NJ : Princeton University Press, 2000
_z0691026432
_w(DLC) 99044938
_w(OCoLC)42290530
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9453275
938 _aAskews and Holts Library Services
_bASKH
_nAH38216096
938 _aProQuest Ebook Central
_bEBLB
_nEBL6425528
942 _cEBK
994 _a92
_bINTKS
999 _c81510
_d81510