000 07672nam a2200733 i 4500
001 9780750321877
003 IOP
005 20230516170213.0
006 m eo d
007 cr cn |||m|||a
008 210317s2021 enka fob 000 0 eng d
020 _a9780750321877
_qebook
020 _a9780750321860
_qmobi
020 _z9780750321853
_qprint
020 _z9780750321884
_qmyPrint
024 7 _a10.1088/978-0-7503-2187-7
_2doi
035 _a(CaBNVSL)thg00082315
035 _a(OCoLC)1242438982
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQC174.45
_b.M487 2021eb
072 7 _aPHQ
_2bicssc
072 7 _aSCI057000
_2bisacsh
082 0 4 _a530.144
_223
100 1 _aMeurice, Yannick,
_eauthor.
_970131
245 1 0 _aQuantum field theory :
_ba quantum computation approach /
_cYannick Meurice.
264 1 _aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
_bIOP Publishing,
_c[2021]
300 _a1 online resource (various pagings) :
_billustrations (some color).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _a[IOP release $release]
490 1 _aIOP ebooks. [2021 collection]
500 _a"Version: 20210201"--Title page verso.
504 _aIncludes bibliographical references.
505 0 _a1. Introduction -- 1.1. Goals of the lecture notes -- 1.2. Classical electrodynamics and its symmetries -- 1.3. Field quantization -- 1.4. The need for discreteness in quantum computing -- 1.5. Symmetries and predictive models
505 8 _a2. Classical field theory -- 2.1. Classical action, equations of motion and symmetries -- 2.2. Transition to field theory -- 2.3. Symmetries -- 2.4. The Klein-Gordon field -- 2.5. The Dirac field -- 2.6. Maxwell fields -- 2.7. Yang-Mills fields -- 2.8. Linear sigma models -- 2.9. General relativity -- 2.10. Examples of two-dimensional curved spaces -- 2.11. Mathematica notebook for geodesics
505 8 _a3. Canonical quantization -- 3.1. A one-dimensional harmonic crystal -- 3.2. The infinite volume and continuum limits -- 3.3. Free KG and Dirac quantum fields in 3 + 1 dimensions -- 3.4. The Hamiltonian formalism for Maxwell's gauge fields
505 8 _a4. A practical introduction to perturbative quantization -- 4.1. Overview -- 4.2. Dyson's chronological series -- 4.3. Feynman propagators, Wick's theorem and Feynman rules -- 4.4. Decay rates and cross sections -- 4.5. Radiative corrections and the renormalization program
505 8 _a5. The path integral -- 5.1. Overview -- 5.2. Free particle in quantum mechanics -- 5.3. Complex Gaussian integrals and Euclidean time -- 5.4. The Trotter product formula -- 5.5. Models with quadratic potentials -- 5.6. Generalization to field theory -- 5.7. Functional methods for interactions and perturbation theory -- 5.8. Maxwell's fields at Euclidean time -- 5.9. Connection to statistical mechanics -- 5.10. Simple exercises on random numbers and importance sampling -- 5.11. Classical versus quantum
505 8 _a6. Lattice quantization of spin and gauge models -- 6.1. Lattice models -- 6.2. Spin models -- 6.3. Complex generalizations and local gauge invariance -- 6.4. Pure gauge theories -- 6.5. Abelian gauge models -- 6.6. Fermions and the Schwinger model
505 8 _a7. Tensorial formulations -- 7.1. Remarks about the discreteness of tensor formulations -- 7.2. The Ising model -- 7.3. O(2) spin models -- 7.4. Boundary conditions -- 7.5. Abelian gauge theories -- 7.6. The compact abelian Higgs model -- 7.7. Models with non-abelian symmetries -- 7.8. Fermions
505 8 _a8. Conservation laws in tensor formulations -- 8.1. Basic identity for symmetries in lattice models -- 8.2. The O(2) model and models with abelian symmetries -- 8.3. Non-abelian global symmetries -- 8.4. Local abelian symmetries -- 8.5. Generalization of Noether's theorem
505 8 _a9. Transfer matrix and Hamiltonian -- 9.1. Transfer matrix for spin models -- 9.2. Gauge theories -- 9.3. U(1) pure gauge theory -- 9.4. Historical aspects of quantum and classical tensor networks -- 9.5. From transfer matrix functions to quantum circuits -- 9.6. Real time evolution for the quantum ising model -- 9.7. Rigorous and empirical Trotter bounds -- 9.8. Optimal Trotter error
505 8 _a10. Recent progress in quantum computation/simulation for field theory -- 10.1. Analog simulations with cold atoms -- 10.2. Experimental measurement of the entanglement entropy -- 10.3. Implementation of the abelian Higgs model -- 10.4. A two-leg ladder as an idealized quantum computer -- 10.5. Quantum computers
505 8 _a11. The renormalization group method -- 11.1. Basic ideas and historical perspective -- 11.2. Coarse graining and blocking -- 11.3. The Niemeijer-van Leeuwen equation -- 11.4. Tensor renormalization group (TRG) -- 11.5. Critical exponents and finite-size scaling -- 11.6. A simple numerical example with two states -- 11.7. Numerical implementations -- 11.8. Python code -- 11.9. Additional material
505 8 _a12. Advanced topics -- 12.1. Lattice equations of motion -- 12.2. A first look at topological solutions on the lattice -- 12.3. Topology of U(1) gauge theory and topological susceptibility -- 12.4. Mathematica notebooks -- 12.5. Large field effects in perturbation theory -- 12.6. Remarks about the strong coupling expansion.
520 3 _aThis book introduces quantum field theory models from a classical point of view. Practical applications are discussed, along with recent progress for quantum computations and quantum simulations experiments. New developments concerning discrete aspects of continuous symmetries and topological solutions in tensorial formulations of gauge theories are also reported. Quantum Field Theory: A Quantum Computation Approach requires no prior knowledge beyond undergraduate quantum mechanics and classical electrodynamics. With exercises involving Mathematica and Python with solutions provided, the book is an ideal guide for graduate students and researchers in high-energy, condensed matter and atomic physics.
521 _aUpper level undergraduate/graduate.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
545 _aYannick Meurice is a Professor at the University of Iowa. He obtained his PhD at U. C. Louvain-la-Neuve in 1985 under the supervision of Jacques Weyers and Gabriele Veneziano. He was a postdoc at CERN and Argonne National Laboratory and a visiting professor at CINVESTAV in Mexico City. He joined the faculty of the Department of Physics and Astronomy at the University of Iowa in 1990. His current work includes lattice gauge theory, tensor renormalization group methods, near conformal gauge theories, critical machine learning, quantum simulations with cold atoms and quantum computing. He is the PI of a multi-institutional DOE HEP QuantISED grant.
588 0 _aTitle from PDF title page (viewed on March 17, 2021).
650 0 _aQuantum field theory.
_912636
650 0 _aQuantum computing.
_910080
650 7 _aQuantum physics (quantum mechanics & quantum field theory)
_2bicssc
_970132
650 7 _aSCIENCE / Physics / Quantum Theory.
_2bisacsh
_96921
710 2 _aInstitute of Physics (Great Britain),
_epublisher.
_911622
776 0 8 _iPrint version:
_z9780750321853
_z9780750321884
830 0 _aIOP (Series).
_pRelease 21.
_970133
830 0 _aIOP ebooks.
_p2021 collection.
_970134
856 4 0 _uhttps://iopscience.iop.org/book/978-0-7503-2187-7
942 _cEBK
999 _c82786
_d82786