000 08071nam a2200805 i 4500
001 9780750322768
003 IOP
005 20230516170215.0
006 m eo d
007 cr cn |||m|||a
008 211108s2021 enka fob 000 0 eng d
020 _a9780750322768
_qebook
020 _a9780750322751
_qmobi
020 _z9780750322744
_qprint
020 _z9780750322775
_qmyPrint
024 7 _a10.1088/978-0-7503-2276-8
_2doi
035 _a(CaBNVSL)thg00082705
035 _a(OCoLC)1280155254
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQD564
_b.P486 2021eb
072 7 _aPNRH
_2bicssc
072 7 _aSCI013100
_2bisacsh
082 0 4 _a541.37
_223
100 1 _aPetsev, D. N.
_q(Dimiter Nikolov),
_d1962-
_eauthor.
_970153
245 1 0 _aMolecular theory of electric double layers /
_cDimiter N. Petsev, Frank van Swol and Laura J.D. Frink.
264 1 _aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
_bIOP Publishing,
_c[2021]
300 _a1 online resource (various pagings) :
_billustrations (some color).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _a[IOP release $release]
490 1 _aIOP ebooks. [2021 collection]
500 _a"Version: 202110"--Title page verso.
504 _aIncludes bibliographical references.
505 0 _a1. Introduction : a historical overview -- 1.1. Charges and fields -- 1.2. Electrostatics of systems with distributed charges -- 1.3. The concept of electric double layer
505 8 _apart I. Theory. 2. The origin of charge at interfaces involving electrolyte solutions -- 2.1. Effects of the surface chemical reactions and the charge regulation model -- 2.2. Effects due to physical adsorption -- 2.3. Structural effects on the ionic and solvent concentration at the interface
505 8 _a3. Continuum models of the electric double layers -- 3.1. The Poisson-Boltzmann equation -- 3.2. Electric double layer models based on the Poisson-Boltzmann equation : exact and approximate solutions -- 3.3. Beyond the Boltzmann distribution : the semiconductor-electrolyte interface -- 3.4. Electrokinetic phenomena -- 3.5. Deficiencies of the continuum approach
505 8 _a4. Integral equation theory -- 4.1. Background -- 4.2. Percus-Yevick closure -- 4.3. The hypernetted-chain closure -- 4.4. The mean spherical approximation (MSA) -- 4.5. Hard sphere mixtures -- 4.6. The Ornstein-Zernike equations approach to studying electric double layers
505 8 _a5. Perturbation and mean field theory -- 5.1. Background -- 5.2. Virial expansions -- 5.3. Zwanzig's perturbation theory -- 5.4. Mean field theory
505 8 _a6. Density functional theory -- 6.1. Density functional theory for electronic structure -- 6.2. Density functional theory for classical fluids
505 8 _a7. Classical-DFT for electrolyte interfaces -- 7.1. Molecular models of electrolytes -- 7.2. Classical-DFT for point-charge electrolytes -- 7.3. Classical-DFT for finite-size electrolytes -- 7.4. Classical-DFT with correlations -- 7.5. Classical-DFT with cohesive interactions -- 7.6. Classical-DFT for systems with active surfaces -- 7.7. Classical-DFT for water -- 7.8. Classical-DFT for electrokinetic systems
505 8 _apart II. Structure of a single electric double layer : effects due to surface charge regulation and non-Coulombic interactions. 8. Molecular properties of a single electric double layer -- 8.1. Classical density functional theory model of a single flat electric double layer -- 8.2. Solution structure in an electric double layer with surface charge regulation -- 8.3. Conclusions
505 8 _a9. Ionic solvation effects and solvent-solvent interactions -- 9.1. Solvation of the potential determining ions -- 9.2. Solvation of the positive non-potential determining ions -- 9.3. Solvation of the negative non-potential determining ions -- 9.4. Effect of the solvent-solvent fluid interactions -- 9.5. Conclusions
505 8 _a10. Surface solvation and non-Coulombic ion-surface interactions -- 10.1. Solvent-surface interactions. Solvophilic and solvophobic surfaces -- 10.2. Effect of the non-Coulombic interactions between the potential determining ions and the charged wall -- 10.3. Effect of the non-Coulombic positive ions--surface interactions -- 10.4. Effect of the non-Coulombic negative ions--surface interactions -- 10.5. Conclusions
505 8 _a11. The potential distribution in the electric double layer and its relationship to the fluid charge -- 11.1. The Poisson equation for structured electrolyte solutions -- 11.2. Molecular interpretation of the Helmholtz planes, the Stern-Grahame layer, and the electrokinetic shear plane -- 11.3. Conclusions
505 8 _a12. Electric double layers containing multivalent ions -- 12.1. Multivalent ion density profiles in the electric double layer -- 12.2. Effect of the non-potential-determining ions valency on the density profiles of the potential determining ions in the electric double layer -- 12.3. Non-Coulombic surface interactions, charge and potential distributions in the Stern-Grahame layer and beyond -- 12.4. Conclusions
505 8 _a13. Ionic size effects -- 13.1. Ionic size variations and solution density -- 13.2. Conclusions
505 8 _apart III. Numerical methods. 14. Molecular simulation : methods -- 14.1. Background -- 14.2. Molecular dynamics methods -- 14.3. The potential distribution theorem (PDT) -- 14.4. Simulation routes to the grand potential
505 8 _a15. Molecular simulation : applications -- 15.1. Background -- 15.2. One-component plasma -- 15.3. Molten salts -- 15.4. Bulk electrolytes
505 8 _a16. Numerical methods for classical-DFT -- 16.1. Solution methods -- 16.2. Algorithms for constructing phase diagrams.
520 3 _aThe electrical double layer describes charge and potential distributions that form at the interface between electrolyte solutions and the surface of an object, and they play a fundamental role in chemical and electrochemical behaviour. Colloid science, electrochemistry, material science, and biology are a few examples where such interfaces play a crucial role. The focus of this book is on the application of modern liquid state theories to the properties of electric double layers, where it demonstrates the ability of statistical mechanical approaches, such as the classical density functional theory, to provide insights and details that will enable a better and more quantitative understanding of electric double layers. The book will be essential reading for advanced students and researchers in interfacial science and its numerous applications.
521 _aResearchers.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
545 _aDr. Dimiter N. Petsev received his PhD in Physical Chemistry from the University of Sofia.Dr Frank van Swol received his PhD in Physical Chemistry from the University of Amsterdam, The Netherlands, where he was supervised by Prof. L.V. Woodcock. Dr. Laura J. Douglas Frink received her PhD in Chemical Engineering from the University of Illinois at Urbana-Champaign in 1995 where she was advised by Frank van Swol and Charles Zukoski.
588 0 _aTitle from PDF title page (viewed on November 8, 2021).
650 0 _aElectric double layer.
_918792
650 0 _aSurface chemistry.
_94753
650 7 _aElectrochemistry & magnetochemistry.
_2bicssc
_970154
650 7 _aMaterials.
_2bisacsh
_97549
700 1 _aSwol, Frank van,
_eauthor.
_970155
700 1 _aFrink, Laura J. D.,
_eauthor.
_970156
710 2 _aInstitute of Physics (Great Britain),
_epublisher.
_911622
776 0 8 _iPrint version:
_z9780750322744
_z9780750322775
830 0 _aIOP (Series).
_pRelease 21.
_970157
830 0 _aIOP ebooks.
_p2021 collection.
_970158
856 4 0 _uhttps://iopscience.iop.org/book/978-0-7503-2276-8
942 _cEBK
999 _c82791
_d82791