000 07579nam a2200661 i 4500
001 9780750324724
003 IOP
005 20230516170217.0
006 m eo d
007 cr cn |||m|||a
008 211108s2021 enka fob 000 0 eng d
020 _a9780750324724
_qebook
020 _a9780750324717
_qmobi
020 _z9780750324700
_qprint
020 _z9780750324731
_qmyPrint
024 7 _a10.1088/978-0-7503-2472-4
_2doi
035 _a(CaBNVSL)thg00082706
035 _a(OCoLC)1280155225
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTA418.12
_b.R364 2021eb
072 7 _aPHJ
_2bicssc
072 7 _aSCI053000
_2bisacsh
082 0 4 _a620.11295
_223
100 1 _aRamesh, K.,
_d1960-
_eauthor.
_970187
245 1 0 _aDevelopments in photoelasticity :
_ba renaissance /
_cK. Ramesh.
264 1 _aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
_bIOP Publishing,
_c[2021]
300 _a1 online resource (various pagings) :
_billustrations (some color).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _a[IOP release $release]
490 1 _aIOP series in advances in optics, photonics and optoelectronics
490 1 _aIOP ebooks. [2021 collection]
500 _a"Version: 202110"--Title page verso.
504 _aIncludes bibliographical references.
505 0 _a1. Basics of photoelasticity and photoplasticity -- 1.1. Introduction -- 1.2. Birefringence and its use in photoelasticity -- 1.3. Retardation plates -- 1.4. Stress-optic law -- 1.5. Optical arrangements and fringe fields in conventional photoelasticity -- 1.6. Jones calculus -- 1.7. Analysis of plane polariscope by Jones calculus -- 1.8. Analysis of circular polariscope by Jones calculus -- 1.9. Fringe contours and their numbering in photoelasticity -- 1.10. Calibration of model materials -- 1.11. Tardy's method of compensation -- 1.12. Three-dimensional photoelasticity -- 1.13. Interpretation of results obtained from plastics to metallic prototypes -- 1.14. Similitude relations -- 1.15. Photoelastic results and methods for comparison -- 1.16. Reflection photoelasticity -- 1.17. Photoplasticity -- 1.18. Closure
505 8 _a2. Fringe multiplication, fringe thinning and carrier fringe analysis -- 2.1. Introduction -- 2.2. Digital fringe multiplication -- 2.3. Digital fringe thinning -- 2.4. Need of fracture mechanics to quantify cracks -- 2.5. Development of the stress field equation in the neighbourhood of the crack-tip -- 2.6. Study of interacting cracks -- 2.7. Evaluation of stress-field parameters using non-linear least squares analysis -- 2.8. Subtleties in the evaluation of crack-tip stress field parameters -- 2.9. Experimental evaluation of stress field parameters for interacting cracks -- 2.10. Empirical relations for estimating normalized SIF under biaxial loading -- 2.11. Use of carrier fringes in photoelasticity -- 2.12. Residual stresses in a commercial polycarbonate sheet -- 2.13. Nomenclature of stresses in glass -- 2.14. Thickness stress evaluation of commercially annealed float glass -- 2.15. Calibration of glass -- 2.16. Edge stress analysis in tempered glass panels -- 2.17. Influence of residual stress on crack-tip stress field parameters -- 2.18. Closure
505 8 _a3. Phase shifting techniques in photoelasticity -- 3.1. Introduction -- 3.2. Intensity of light transmitted for generic arrangements of plane and circular polariscopes -- 3.3. Development of phase shifting techniques -- 3.4. Evaluation of photoelastic parameters using intensity information -- 3.5. Phasemaps in photoelasticity -- 3.6. Intricacies in phasemaps of digital photoelasticity -- 3.7. Unwrapping methodologies -- 3.8. Evaluation of isoclinics -- 3.9. Smoothing of isoclinics -- 3.10. Unwrapping of isochromatics -- 3.11. Phase shifting in colour domain -- 3.12. Parallel unwrapping -- 3.13. Developments in digital photoelastic hardware and software -- 3.14. Closure
505 8 _a4. Total fringe order photoelasticity -- 4.1. Introduction -- 4.2. Intensity of light transmitted in white light for various polariscope arrangements -- 4.3. Basics of three-fringe photoelasticity -- 4.4. Calibration specimens and generation of a merged calibration table -- 4.5. Twelve-fringe photoelasticity/ Total fringe order photoelasticity -- 4.6. Colour adaptation techniques -- 4.7. Scanning schemes -- 4.8. Influence of spatial resolution -- 4.9. Fringe resolution guided scanning in TFP (FRSTFP) -- 4.10. Image normalization methods -- 4.11. Five-step/ Four-step methods -- 4.12. Digital photoelasticity applied to orthodontics -- 4.13. Closure -- Appendix A. Applying a frequency filter to an image -- Appendix B. Applying Hilbert transform to an image
505 8 _a5. Diverse applications of photoelasticity -- 5.1. Introduction -- 5.2. Photoelasticity impacting everyday life -- 5.3. Photoelasticity in solving a problem in multi-physics -- 5.4. Photoelasticity assisted FE modelling -- 5.5. Importance of higher order terms in crack growth prediction -- 5.6. Ingenuity of solving problems by simplifying the problem -- 5.7. Three-dimensional photoelastic analysis -- 5.8. Phenomenological studies on granular materials and structures -- 5.9. Photoelasticity for food security -- 5.10. Photoelasticity applied to neurobiology -- 5.11. Photoelasticity in developing biomaterials -- 5.12. Applications of Infrared Photoelasticity -- 5.13. Photoelasticity in solid mechanics education -- 5.14. Closure -- Appendix. Simplified solution for stress field in a circular disc with self-equilibrated forces.
520 3 _aIn recent years, the field of digital photoelasticity has begun to stabilise. Developments in Photoelasticity presents, in one volume, the time-tested advancements that have brought about a fundamental change in employing photoelastic analysis to solve diverse applications. Based on decades of active research, this authoritative treatment surveys wide-ranging connections in the field, focusing on developments made since 2010.
521 _aUniversity/industry/academics in optical materials/mechanics, optical design.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
545 _aProfessor K. Ramesh is currently the K. Mahesh Chair Professor at the Department of Applied Mechanics, IIT Madras and a Fellow of the Indian National Academy of Engineering. He received the Zandman award in 2012 for outstanding research contributions utilizing photoelastic coatings and has been a member of editorial boards of Optics and Lasers in Engineering and Strain since 2000. He has developed software such as P_Scopeª, DigiTFPª, DigiPhoto and PSIF for photoelastic analysis and innovative e-books with extensive animations for teaching several courses.
588 0 _aTitle from PDF title page (viewed on November 8, 2021).
650 0 _aPhotoelasticity.
_970188
650 7 _aOptical physics.
_2bicssc
_970189
650 7 _aOptics and photonics.
_2bisacsh
_918815
710 2 _aInstitute of Physics (Great Britain),
_epublisher.
_911622
776 0 8 _iPrint version:
_z9780750324700
_z9780750324731
830 0 _aIOP (Series).
_pRelease 21.
_970190
830 0 _aIOP series in advances in optics, photonics and optoelectronics.
_970191
830 0 _aIOP ebooks.
_p2021 collection.
_970192
856 4 0 _uhttps://iopscience.iop.org/book/978-0-7503-2472-4
942 _cEBK
999 _c82796
_d82796