000 10133nam a2200829 i 4500
001 9780750325042
003 IOP
005 20230516170217.0
006 m eo d
007 cr cn |||m|||a
008 210412s2021 enka fob 001 0 eng d
020 _a9780750325042
_qebook
020 _a9780750325035
_qmobi
020 _z9780750325028
_qprint
020 _z9780750325059
_qmyPrint
024 7 _a10.1088/978-0-7503-2504-2
_2doi
035 _a(CaBNVSL)thg00082401
035 _a(OCoLC)1246473922
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQC718.5.T8
_bS368 2021eb
072 7 _aPHFP
_2bicssc
072 7 _aSCI074000
_2bisacsh
082 0 4 _a530.44
_223
100 1 _aScott, Bruce D.,
_eauthor.
_970193
245 1 0 _aTurbulence and instabilities in magnetised plasmas.
_nVolume 1,
_pFluid drift turbulence /
_cBruce Scott.
246 3 0 _aFluid drift turbulence.
264 1 _aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
_bIOP Publishing,
_c[2021]
300 _a1 online resource (various pagings) :
_billustrations (some color).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _a[IOP release $release]
490 1 _aIOP series in plasma physics
490 1 _aIOP ebooks. [2021 collection]
500 _a"Version: 20210301"--Title page verso.
504 _aIncludes bibliographical references and index.
505 0 _a1. Overview : magnetised plasma dynamics -- 1.1. Dynamics in plasmas -- 1.2. Magnetised plasmas -- 1.3. Outline of the work
505 8 _a2. Introduction to turbulence -- 2.1. Statistical nonlinearity and cascade dynamics -- 2.2. Eddy mitosis and the cascade model -- 2.3. The statistical nature of turbulence -- 2.4. Quadratic nonlinearity and three-wave coupling -- 2.5. Fluid turbulence--energy and enstrophy -- 2.6. MHD turbulence -- 2.7. Selective decay -- 2.8. How the turbulence becomes two-dimensional -- 2.9. Plan
505 8 _a3. Turbulence in two-dimensional systems -- 3.1. Various model systems -- 3.2. 2D hydrodynamic turbulence -- 3.3. 2D MHD turbulence -- 3.4. 2D electron MHD turbulence -- 3.5. 2D Hall MHD turbulence -- 3.6. Compressibility in MHD
505 8 _a4. Driven/dissipative turbulence -- 4.1. Parallel dynamics along the guide field -- 4.2. The model system for dissipative ExB turbulence -- 4.3. Turbulence in the adiabatic and hydrodynamic limits -- 4.4. Implication of the ion gyroradius
505 8 _a5. Absolute equilibrium ensembles -- 5.1. AEQ and the role of dissipation in turbulence -- 5.2. The conserved quantities and equipartition -- 5.3. The phase space of degrees of freedom -- 5.4. Computational verification -- 5.5. Equipartition among the energies -- 5.6. Reintroduction of dissipation
505 8 _a6. Fluid electrodynamics in a plasma -- 6.1. Introduction -- 6.2. Ideal fluid equations and electrodynamics -- 6.3. High frequency motion under fluid electrodynamics -- 6.4. Quasineutral motion in a neutral plasma -- 6.5. Fluid plasma dynamics under quasineutrality -- 6.6. E Pluribus Unum--the steps to MHD -- 6.7. MHD waves--Alfv�en waves -- 6.8. Energetics of the ideal fluid dynamical systems -- 6.9. Dissipation--corrections to the ideal plasma -- 6.10. Chapman-Enskog procedure--dissipation -- 6.11. The moment approach--diamagnetic fluxes
505 8 _a7. Fluid drift dynamics in a magnetised plasma -- 7.1. Introduction -- 7.2. What the drift approximation is -- 7.3. Perpendicular force balance--diamagnetic current -- 7.4. Parallel dynamics-shear Alfv�en nonlinearity -- 7.5. Perpendicular force balance--fluid drifts -- 7.6. The polarisation drift -- 7.7. Drift ordering and 'delta-f' -- 7.8. Derivation of the fluid drift equations -- 7.9. Energetics of the fluid drift equations -- 7.10. Summary -- 7.11. Delta-f versus total-f energetics -- 7.12. Quasineutrality in Drift Dynamics
505 8 _a8. Parallel dynamics--Alfv�en/sound waves -- 8.1. Introduction -- 8.2. The four-field fluid drift model -- 8.3. Wave-like motion -- 8.4. Energetics, dissipation -- 8.5. Transient responses to a disturbance -- 8.6. Numerical examples -- 8.7. Energetics and decay rates -- 8.8. Thermal transport by the current -- 8.9. Effects of temperature dynamics -- 8.10. Summary
505 8 _a9. Perpendicular dynamics--drift waves -- 9.1. Introduction -- 9.2. ExB advection in a gradient--the drift frequency -- 9.3. Drift waves--the very simplest model -- 9.4. Drift waves--polarisation and dispersion -- 9.5. Drift waves--self-consistent dynamics -- 9.6. Dissipation : phase shifts and energetics -- 9.7. Alfv�enic transients -- 9.8. Numerical examples -- 9.9. Drift Alfv�en waves--the magnetic flutter effect -- 9.10. Reactive instabilities -- 9.11. Mode structure -- 9.12. Summary
505 8 _a10. Mode structure diagnostics -- 10.1. Introduction -- 10.2. Temporal diagnostics -- 10.3. Spectral diagnostics -- 10.4. Energetics -- 10.5. Correlations -- 10.6. Linear growth phase versus turbulence -- 10.7. Randomness -- 10.8. Cross coherence -- 10.9. Interscale transfer -- 10.10. Three-dimensional diagnostics -- 10.11. Summary--mode structure in turbulence
505 8 _a11. Three-dimensional drift wave turbulence -- 11.1. Introduction -- 11.2. Drift Alfv�en model and energetics -- 11.3. Periodic cases -- 11.4. Aspect ratio -- 11.5. Bounded cases -- 11.6. Cases with magnetic shear -- 11.7. On pathology -- 11.8. Summary
505 8 _a12. Drift wave turbulence in a sheared magnetic field -- 12.1. Introduction -- 12.2. Field line connection and magnetic shear -- 12.3. The 2D sheared slab model -- 12.4. Linear stability of electrostatic drift waves -- 12.5. Magnetic shear in 3D--field-aligned coordinates -- 12.6. Self-sustained drift wave turbulence -- 12.7. Magnetic shear and drift wave mode structure -- 12.8. Electromagnetic effects -- 12.9. Contingent role of linear stability -- 12.10. Summary
505 8 _a13. MHD interchange turbulence -- 13.1. Introduction -- 13.2. Magnetic divergences and the interchange model -- 13.3. Interchange energetics -- 13.4. The 2D interchange model -- 13.5. The ideal interchange mode -- 13.6. 2D interchange turbulence -- 13.7. Radial flows versus zonal flows -- 13.8. The mode structure of interchange turbulence -- 13.9. A simple model of a toroidal magnetic field -- 13.10. The ballooning mode -- 13.11. Three dimensions--ballooning mode turbulence -- 13.12. Curvature forcing and ballooning mode structure -- 13.13. Electromagnetic and collisional effects -- 13.14. Summary
505 8 _a14. Toroidal drift Alfv�en turbulence -- 14.1. Introduction -- 14.2. The toroidal drift Alfv�en model -- 14.3. Toroidal drift Alfv�en turbulence -- 14.4. The energetics of toroidal turbulence -- 14.5. The mode structure of toroidal turbulence -- 14.6. From the linear stage to turbulence -- 14.7. Electromagnetic and collisional effects -- 14.8. Warm ion effects -- 14.9. Comparison to the control cases -- 14.10. Summary
505 8 _a15. Turbulence on open field lines -- 15.1. Introduction--open field line geometry -- 15.2. Model characteristics -- 15.3. Effects on the turbulence -- 15.4. Turbulence in a dipole magnetic field -- 15.5. Summary
505 8 _a16. Drift wave turbulence and flows -- 16.1. Introduction--eddies and flows -- 16.2. Kelvin-Helmholtz stability -- 16.3. Sheared flows and decorrelation -- 16.4. ExB flow energetics -- 16.5. Effect of background flow shear -- 16.6. Flow shear in warm-ion toroidal cases -- 16.7. Properties of the flux surface average -- 16.8. Zonal and equilibrium flows -- 16.9. Self-generated zonal flows -- 16.10. Summary -- 17. Interlude.
520 3 _aEver since the first observations of turbulent fluctuations in laboratory plasma experiments in the years around 1980, turbulence in magnetised plasmas has been a subject of vigorous interest in the field of plasma physics and magnetic confinement. The first of a two-volume set, this book begins with an overview of the essential nature of a plasma and a magnetised plasma, then turbulence and plasma turbulence are introduced conceptually and mathematically. There follows a theoretical interlude developing the concepts of fluid and plasma dynamics. After this, concepts of energetic consistency and nonlinear instability and mode structure are emphasised. The effects of magnetic shear and curvature, and open and closed magnetic field line flux surfaces, and finally the interaction with both background and self-generated flows, are covered. An interlude points to a second volume treating temperature gradients and fluctuations, gyrokinetic and gyrofluid theory, and the interplay with magnetohydrodynamic instabilities. Part of IOP Series in Plasma Physics.
521 _aGraduate students and researchers in plasma fusion.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
545 _aBruce Scott is a research plasma physicist having graduated with a Doctorate from the University of Maryland in 1985, and with the German Habilitation from the Heinrich-Heine-Universit�at D�usseldorf in 2001. He is a Fellow of the American Physical Society with membership since 1979. He has several tens of first author papers in peer-reviewed journals in the field of theoretical plasma physics.
588 0 _aTitle from PDF title page (viewed on April 12, 2021).
650 0 _aPlasma turbulence.
_970194
650 0 _aPlasma instabilities.
_970195
650 0 _aPlasma dynamics.
_928826
650 7 _aPlasma physics.
_2bicssc
_942183
650 7 _aSCIENCE / Physics / Atomic & Molecular.
_2bisacsh
_970166
710 2 _aInstitute of Physics (Great Britain),
_epublisher.
_911622
776 0 8 _iPrint version:
_z9780750325028
_z9780750325059
830 0 _aIOP (Series).
_pRelease 21.
_970196
830 0 _aIOP series in plasma physics.
_970168
830 0 _aIOP ebooks.
_p2021 collection.
_970197
856 4 0 _uhttps://iopscience.iop.org/book/978-0-7503-2504-2
942 _cEBK
999 _c82797
_d82797