000 08036nam a2200745 i 4500
001 9780750331715
003 IOP
005 20230516170227.0
006 m eo d
007 cr cn |||m|||a
008 220118s2021 enka fob 000 0 eng d
020 _a9780750331715
_qebook
020 _a9780750331708
_qmobi
020 _z9780750331692
_qprint
020 _z9780750331722
_qmyPrint
024 7 _a10.1088/978-0-7503-3171-5
_2doi
035 _a(CaBNVSL)thg00083117
035 _a(OCoLC)1294829759
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK7877
_b.K537 2021eb vol. 1
072 7 _aTJFD
_2bicssc
072 7 _aTEC008000
_2bisacsh
082 0 4 _a621.381
_223
100 1 _aKhanna, Vinod Kumar,
_d1952-
_eauthor.
_926421
245 1 0 _aPractical terahertz electronics.
_nVolume 1,
_pSolid-state devices and vacuum tubes :
_bdevices and applications /
_cVinod Kumar Khanna.
246 3 0 _aSolid-state devices and vacuum tubes.
264 1 _aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
_bIOP Publishing,
_c[2021]
300 _a1 online resource (various pagings) :
_billustrations (some color).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _a[IOP release $release]
490 1 _aIOP ebooks. [2021 collection]
500 _a"Version: 202112"--Title page verso.
504 _aIncludes bibliographical references.
505 0 _apart I. Solid-state electronic devices. 1. Terahertz electromagnetic waves -- 1.1. What are terahertz waves? -- 1.2. The electromagnetic waves -- 1.3. Subdivisions of electromagnetic waves according to frequencies : the electromagnetic spectrum -- 1.4. Location of terahertz gap in the international standard band designations -- 1.5. Terahertz electronics -- 1.6. The practical perspective of electronics -- 1.7. Moving from conventional to terahertz electronics -- 1.8. Peculiarities of the terahertz gap -- 1.9. Unique advantages of terahertz gap frequencies -- 1.10. Organizational plan of the book -- 1.11. Discussion and conclusions
505 8 _a2. Schottky barrier, metal-insulator-metal, self-switching and geometric diodes -- 2.1. Schottky diode principle and switching action -- 2.2. Current-voltage equation of a non-ideal Schottky-barrier diode (SBD) -- 2.3. Components of the traditional equivalent circuit of a Schottky-barrier diode -- 2.4. Cut-off frequency of the circular-contact SBD -- 2.5. Consideration of skin effect for series resistance calculation -- 2.6. Range of applicability of traditional SBD model -- 2.7. Extended model of SBD -- 2.8. Schottky diodes with terahertz operational frequencies -- 2.9. Non-PN junction diodes -- 2.10. Discussion and conclusions
505 8 _a3. Resonant tunneling diodes -- 3.1. Resonant tunneling diode working and high-frequency capability -- 3.2. Simplest equivalent circuit model of resonant tunneling diode -- 3.3. Maximum output power conveyed to the load resistor RL -- 3.4. Small-signal transit-time equivalent circuit model of RTD -- 3.5. Physics-based small-signal equivalent circuit model -- 3.6. Terahertz resonant tunneling diodes -- 3.7. Discussion and conclusions
505 8 _a4. Avalanche transit-time and transferred-electron diodes -- 4.1. Mechanisms of creation of negative resistance -- 4.2. Frequency and power capabilities of IMPATT diode -- 4.3. Diode structure and dynamic negative resistance behavior -- 4.4. Terahertz GaAs IMPATT diodes -- 4.5. Transferred-electron diode -- 4.6. Physics of Gunn diode operation -- 4.7. Terahertz planar Gunn diodes -- 4.8. Discussion and conclusions
505 8 _a5. Heterojunction bipolar transistors -- 5.1. Capability of heterojunction bipolar transistor to work at high frequencies -- 5.2. Gain definitions -- 5.3. Frequency response of the common-emitter transistor amplifier -- 5.4. Figures of merit (FOMs) for high-frequency bipolar transistors -- 5.5. Correlation of terms in cut-off frequency equation with components of equivalent circuit of the bipolar transistor -- 5.6. DHBT IC technologies -- 5.7. Discussion and conclusions
505 8 _a6. Metal-oxide semiconductor field-effect transistors -- 6.1. MOSFET construction and operation -- 6.2. Short-circuit current gain -- 6.3. MOSFET capacitances -- 6.4. Cut-off frequency -- 6.5. Circumventing the MOSFET speed limitations due to long electron transit time -- 6.6. Terahertz MOSFET detectors -- 6.7. Discussion and conclusions
505 8 _a7. High-electron-mobility transistors -- 7.1. MESFET and HEMT basics -- 7.2. HEMT operation at high frequencies -- 7.3. Built-in potential and capacitances -- 7.4. Analysis of an HEMT structure -- 7.5. InP terahertz HEMT technology -- 7.6. Discussion and conclusions
505 8 _apart II. Vacuum electronic devices. 8. Travelling wave tubes and backward wave oscillators -- 8.1. General constructional features of TWTs and BWOs -- 8.2. Closer examination of working of TWT/BWO -- 8.3. Difference between a travelling wave tube and backward wave oscillator from phase/group velocity viewpoint -- 8.4. Electron bunching and amplification of the signal in a TWT -- 8.5. Applications of TWTs -- 8.6. Terahertz TWTs -- 8.7. Operation of the backward wave oscillator -- 8.8. Advantages of the backward wave oscillator -- 8.9. Limitations of the backward wave oscillator -- 8.10. Frequency/power levels achieved with backward wave oscillators -- 8.11. Discussion and conclusions
505 8 _a9. Gyrotrons -- 9.1. Difficulties faced with classical electron tubes in the terahertz range -- 9.2. Periodic beam devices versus periodic circuit devices -- 9.3. Advantages offered by gyrotron for terahertz generation -- 9.4. Components and constructional details of gyrotron -- 9.5. Cyclotron frequency -- 9.6. Cyclotron resonance maser (CRM) -- 9.7. Explanation of the bunching mechanism of a gyrotron with a simplified three-electron model -- 9.8. Dispersion diagram of a gyrotron -- 9.9. Gyrotron research status -- 9.10. Discussion and conclusions
505 8 _a10. Free electron lasers -- 10.1. Free electron laser versus conventional laser -- 10.2. Main components of a free electron laser -- 10.3. Equation of motion of the electron in the undulator -- 10.4. Operating modes of the free electron laser -- 10.5. Discussion and conclusions.
520 3 _aThis research and reference text provides a comprehensive and authoritative survey of the state-of-the-art in terahertz electronics research. Covering the fundamentals, operational principles, and theoretical aspects of the field, the book equips the reader to take the practical steps involved in the fabrication of devices that work in the terahertz frequency range.
521 _aResearchers and professionals working with terahertz electronics and technologies.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
545 _aVinod Kumar Khanna is an independent researcher at Chandigarh, India. He is a retired Chief Scientist from Council of Scientific & Industrial Research (CSIR)-Central Electronics Engineering Research Institute (CEERI), Pilani-India, and retired Professor from Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
588 0 _aTitle from PDF title page (viewed on January 18, 2022).
650 0 _aTerahertz technology.
_94765
650 0 _aSubmillimeter waves.
_928695
650 0 _aSolid state electronics.
_93417
650 0 _aVacuum-tubes.
_970323
650 7 _aElectronic devices & materials.
_2bicssc
_970218
650 7 _aMaterials.
_2bisacsh
_97549
710 2 _aInstitute of Physics (Great Britain),
_epublisher.
_911622
776 0 8 _iPrint version:
_z9780750331692
_z9780750331722
830 0 _aIOP (Series).
_pRelease 21.
_970324
830 0 _aIOP ebooks.
_p2021 collection.
_970325
856 4 0 _uhttps://iopscience.iop.org/book/978-0-7503-3171-5
942 _cEBK
999 _c82818
_d82818