000 07535nam a2200721 i 4500
001 9780750338790
003 IOP
005 20230516170255.0
006 m eo d
007 cr cn |||m|||a
008 210506s2021 enka fob 000 0 eng d
020 _a9780750338790
_qebook
020 _a9780750338783
_qmobi
020 _z9780750338776
_qprint
020 _z9780750338806
_qmyPrint
024 7 _a10.1088/978-0-7503-3879-0
_2doi
035 _a(CaBNVSL)thg00082490
035 _a(OCoLC)1251848148
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQC173.458.M33
_bP578 2021eb
072 7 _aPHFC
_2bicssc
072 7 _aSCI077000
_2bisacsh
082 0 4 _a530.4/12
_223
100 1 _aPires, Antonio Sergio Teixeira,
_eauthor.
_970629
245 1 0 _aTheoretical tools for spin models in magnetic systems /
_cAntonio Sergio Teixeira Pires.
264 1 _aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
_bIOP Publishing,
_c[2021]
300 _a1 online resource (various pagings) :
_billustrations (some color).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _a[IOP release $release]
490 1 _aIOP ebooks. [2021 collection]
500 _a"Version: 20210204"--Title page verso.
504 _aIncludes bibliographical references.
505 0 _a1. The Heisenberg model -- 1.1. Ground state for the ferromagnet -- 1.2. Spontaneous broken symmetries -- 1.3. Ground state for the antiferromagnet -- 1.4. Excited states for the ferromagnet -- 1.5. Translational symmetry -- 1.6. Two spin waves -- 1.7. Long-range order -- 1.8. Mermin and Wagner's theorem -- 1.9. The Ising model -- 1.10. Brillouin zone -- 1.11. Mean-field approximation for the classical ferromagnetic Heisenberg model -- 1.12. Landau theory for phase transitions -- 1.13. The Hubbard model -- 1.14. Exercises
505 8 _a2. Spin waves I -- 2.1. Ferromagnet -- 2.2. Antiferromagnet -- 2.3. Helimagnets -- 2.4. Rotated sublattice -- 2.5. The XY model -- 2.6. The compass model -- 2.7. The Jordan-Wigner transformation -- 2.8. Hardcore bosons -- 2.9. Majorana fermions -- 2.10. Exercises
505 8 _a3. Spin waves II -- 3.1. Triangular lattice -- 3.2. Square lattice Heisenberg antiferromagnet in an external magnetic field -- 3.3. Dzyaloshinskii-Moriya interaction -- 3.4. Symmetries -- 3.5. Nonlinear spin-wave theory -- 3.6. Modified spin-wave theory -- 3.7. Exercises
505 8 _a4. Lattices with two inequivalent sites -- 4.1. The ferromagnetic honeycomb lattice -- 4.2. Generalized Bogoliubov transformation -- 4.3. The antiferromagnetic checkerboard lattice -- 4.4. Antiferromagnetic honeycomb lattice -- 4.5. The antiferromagnetic Union Jack lattice -- 4.6. Exercises
505 8 _a5. Schwinger bosons -- 5.1. Schwinger bosons -- 5.2. Mean-field approximation -- 5.3. Ferromagnet -- 5.4. Antiferromagnet -- 5.5. Gauge transformation -- 5.6. Frustration -- 5.7. Schwinger boson and the J1-J2 model -- 5.8. Valence bonds -- 5.9. VBS ground states for spins larger than 1/2 -- 5.10. Fermion operators -- 5.11. Holons -- 5.12. The dimer order parameter -- 5.13. The Shastry-Sutherland lattice -- 5.14. Exercises
505 8 _a6. Bond operators and Schwinger SU(3) bosons -- 6.1. Bond operators -- 6.2. Quantum phase transitions -- 6.3. Schwinger SU(3) bosons -- 6.4. Bilinear biquadratic model -- 6.5. Variational approach -- 6.6. Exercises
505 8 _a7. Dynamics -- 7.1. Linear response theory -- 7.2. Relation between susceptibility and Green function -- 7.3. Correlation functions -- 7.4. Sum rules -- 7.5. A simple example -- 7.6. Spin transport -- 7.7. Kubo formulas -- 7.8. Green functions -- 7.9. Equation of motion for the retarded Green function -- 7.10. Green function in another context -- 7.11. The memory function method -- 7.12. Hydrodynamic fluctuations -- 7.13. A brief discussion about experimental techniques -- 7.14. Exercises
505 8 _a8. Perturbation theory -- 8.1. The interaction representation -- 8.2. Green functions -- 8.3. Wick's theorem -- 8.4. Feynman diagrams -- 8.5. Interpretation of the Green function -- 8.6. Two-particle Green function -- 8.7. Antiferromagnet -- 8.8. Finite temperature Green function -- 8.9. Magnon-phonon interaction -- 8.10. Exercise
505 8 _a9. Topological magnon Hall effects -- 9.1. Quantum Hall effect of electrons -- 9.2. Magnons in ferromagnets -- 9.3. Transport in two-band models -- 9.4. Thermal Hall conductivity -- 9.5. Three-band model -- 9.6. Calculation of the edge modes -- 9.7. Antiferromagnets -- 9.8. Skyrmions -- 9.9. Exercises
505 8 _a10. Topological spin liquids -- 10.1. Z2 gauge theory -- 10.2. Dimers
505 8 _a11. Numerical methods for spin models -- 11.1. Monte Carlo -- 11.2. Classical Monte Carlo -- 11.3. Quantum Monte Carlo -- 11.4. High-temperature expansions -- 11.5. The density matrix renormalization group -- 11.6. Exact diagonalization -- 11.7. Coupled-cluster method -- 11.8. Conclusions.
520 3 _aThe book is dedicated to the study of theoretical tools in spin models in magnetism. The book presents the basic tools to treat spin models in magnetic systems such as: spin waves, Schwinger bosons formalism, Self-consistent harmonic approximation, Kubo theory, Perturbation theory using Green's function. Several examples where the theory is applied in modern research, are discussed. Some important areas of interest in magnetism today are spin liquids and magnon topological insulators. Both of these subjects are discussed in the book. The book has been written to help graduate students working in the area of spin models in magnetic systems. There are a lot of books that lead with Green's function, but a student has to study almost the whole book to grasp some idea of the theme. The same is true for the linear response theory and spin liquids. The author believes this book will enable students to start doing research in spin models without the need for extensive reading of the literature.
521 _aGraduate students.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
545 _aAntonio Sergio Teixeira Pires obtained his doctoral degree from University of California in Santa Barbara in 1976. He is a professor of Physics at Federal University of Minas Gerais, Brazil, where he carries out research in the area of magnetism. He is a member of the Brazilian Academy of Science and was the Editor of the Brazilian Journal of Physics and a member of the Advisory Board of the Journal of Physics: Condensed Matter. He has published 230 papers and the books ADS/CFT Correspondence in Condensed Matter and A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics.
588 0 _aTitle from PDF title page (viewed on May 6, 2021).
650 0 _aCondensed matter
_xMagnetic properties.
_970630
650 0 _aNuclear spin.
_970631
650 7 _aCondensed matter physics (liquid state & solid state physics)
_2bicssc
_970144
650 7 _aSCIENCE / Physics / Condensed Matter.
_2bisacsh
_965801
710 2 _aInstitute of Physics (Great Britain),
_epublisher.
_911622
776 0 8 _iPrint version:
_z9780750338776
_z9780750338806
830 0 _aIOP (Series).
_pRelease 21.
_970632
830 0 _aIOP ebooks.
_p2021 collection.
_970633
856 4 0 _uhttps://iopscience.iop.org/book/978-0-7503-3879-0
942 _cEBK
999 _c82876
_d82876