000 | 03571nam a2200397 i 4500 | ||
---|---|---|---|
001 | CR9781316411155 | ||
003 | UkCbUP | ||
005 | 20240730160748.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 150316s2016||||enk o ||1 0|eng|d | ||
020 | _a9781316411155 (ebook) | ||
020 | _z9781107565562 (paperback) | ||
040 |
_aUkCbUP _beng _erda _cUkCbUP |
||
050 | 0 | 0 |
_aQC174.26.W28 _bL43 2016 |
082 | 0 | 0 |
_a532/.593 _223 |
245 | 0 | 0 |
_aLectures on the theory of water waves / _cedited by Thomas J. Bridges (University of Surrey), Mark D. Groves (Universität des Saarlandes, Saarbrücken, Germany) and David P. Nicholls (University of Illinois, Chicago). |
264 | 1 |
_aCambridge : _bCambridge University Press, _c2016. |
|
300 |
_a1 online resource (xiv, 283 pages) : _bdigital, PDF file(s). |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aLondon Mathematical Society lecture note series ; _v426 |
|
500 | _aTitle from publisher's bibliographic system (viewed on 05 Feb 2016). | ||
505 | 0 | _aHigh-Order Perturbation of Surfaces (HOPS) Short Course--boundary value problems / David P. Nicholls -- HOPS Short Course--traveling water waves / Benjamin F. Akers -- High-Order Perturbation of Surfaces (HOPS) Short Course--analyticity theory / David P. Nicholls -- HOPS Short Course--stability of travelling water waves / Benjamin F. Akers -- A novel non-local formulation of water waves / Athanassios S. Fokas and Konstantinos Kalimeris -- The dimension-breaking route to three-dimensional solitary gravity-capillary water waves / Mark D. Groves -- Validity and non-validity of the nonlinear Schrödinger equation as a model for water waves / Guido Schneider -- Vortex sheet formulations and initial value problems: analysis and computing / David M. Ambrose -- Wellposedness and singularities of the water wave equations / Sijue Wu -- Conformal mapping and complex topographies / André Nachbin -- Variational water wave modelling: from continuum to experiment / Onno Bokhove and Anna Kalogirou -- Symmetry, modulation and nonlinear waves / Thomas J. Bridges. | |
520 | _aIn the summer of 2014 leading experts in the theory of water waves gathered at the Newton Institute for Mathematical Sciences in Cambridge for four weeks of research interaction. A cross-section of those experts was invited to give introductory-level talks on active topics. This book is a compilation of those talks and illustrates the diversity, intensity, and progress of current research in this area. The key themes that emerge are numerical methods for analysis, stability and simulation of water waves, transform methods, rigorous analysis of model equations, three-dimensionality of water waves, variational principles, shallow water hydrodynamics, the role of deterministic and random bottom topography, and modulation equations. This book is an ideal introduction for PhD students and researchers looking for a research project. It may also be used as a supplementary text for advanced courses in mathematics or fluid dynamics. | ||
650 | 0 |
_aWave-motion, Theory of. _911103 |
|
650 | 0 |
_aWater waves. _92609 |
|
700 | 1 |
_aBridges, Thomas J., _d1955- _eeditor. _974534 |
|
700 | 1 |
_aGroves, Mark D., _d1968- _eeditor. _974535 |
|
700 | 1 |
_aNicholls, David P., _eeditor. _974536 |
|
776 | 0 | 8 |
_iPrint version: _z9781107565562 |
830 | 0 |
_aLondon Mathematical Society lecture note series ; _v426. _974537 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1017/CBO9781316411155 |
942 | _cEBK | ||
999 |
_c84154 _d84154 |