000 02047nam a2200361 i 4500
001 CR9781108552332
003 UkCbUP
005 20240730160754.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 170919s2020||||enk o ||1 0|eng|d
020 _a9781108552332 (ebook)
020 _z9781108428125 (hardback)
040 _aUkCbUP
_beng
_erda
_cUkCbUP
050 0 0 _aTK7882.S65
_bM35 2020
082 0 0 _a006.4/54
_223
100 1 _aMak, M. W.,
_eauthor.
_974614
245 1 0 _aMachine learning for speaker recognition /
_cMan-Wai Mak, Jen-Tzung Chien.
264 1 _aCambridge :
_bCambridge University Press,
_c2020.
300 _a1 online resource (xviii, 309 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _aTitle from publisher's bibliographic system (viewed on 29 Jun 2020).
520 _aThis book will help readers understand fundamental and advanced statistical models and deep learning models for robust speaker recognition and domain adaptation. This useful toolkit enables readers to apply machine learning techniques to address practical issues, such as robustness under adverse acoustic environments and domain mismatch, when deploying speaker recognition systems. Presenting state-of-the-art machine learning techniques for speaker recognition and featuring a range of probabilistic models, learning algorithms, case studies, and new trends and directions for speaker recognition based on modern machine learning and deep learning, this is the perfect resource for graduates, researchers, practitioners and engineers in electrical engineering, computer science and applied mathematics.
650 0 _aAutomatic speech recognition.
_95558
650 0 _aBiometric identification.
_911407
650 0 _aMachine learning.
_91831
700 1 _aChien, Jen-Tzung,
_eauthor.
_974615
776 0 8 _iPrint version:
_z9781108428125
856 4 0 _uhttps://doi.org/10.1017/9781108552332
942 _cEBK
999 _c84183
_d84183