000 | 06958nam a22010575i 4500 | ||
---|---|---|---|
001 | 9783110697216 | ||
003 | DE-B1597 | ||
005 | 20240730161642.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr || |||||||| | ||
008 | 230529t20222022gw fo d z eng d | ||
020 | _a9783110697216 | ||
024 | 7 |
_a10.1515/9783110697216 _2doi |
|
035 | _a(DE-B1597)546521 | ||
035 | _a(OCoLC)1328137295 | ||
040 |
_aDE-B1597 _beng _cDE-B1597 _erda |
||
041 | 0 | _aeng | |
044 |
_agw _cDE |
||
072 | 7 |
_aCOM004000;BISACCOM032000 _2bisacsh |
|
082 | 0 | 4 |
_a004 _qDE-101 |
245 | 0 | 0 |
_aNoise Filtering for Big Data Analytics / _ced. by Souvik Bhattacharyya, Koushik Ghosh. |
264 | 1 |
_aBerlin ; _aBoston : _bDe Gruyter, _c[2022] |
|
264 | 4 | _c©2022 | |
300 | _a1 online resource (VIII, 156 p.) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 0 |
_aDe Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences , _x2626-5427 ; _v12 |
|
505 | 0 | 0 |
_tFrontmatter -- _tPreface -- _tContents -- _tAbout the Editors -- _tApplication of discrete domain wavelet filter for signal denoising -- _tSecret sharing scheme in defense and big data analytics -- _tRecent advances in digital image smoothing: A review -- _tDouble exponential smoothing and its tuning parameters: A re-exploration -- _tEffect of smoothing on big data governed by polynomial memory -- _tHeteroskedasticity in panel data: A big challenge to data filtering -- _tImportance and use of digital filters in digital image processing -- _tSmart filter and smoothing: A new approach of data denoising -- _tAcknowledgement -- _tIndex |
506 | 0 |
_arestricted access _uhttp://purl.org/coar/access_right/c_16ec _fonline access with authorization _2star |
|
520 | _aThis book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model. Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information. This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it. | ||
530 | _aIssued also in print. | ||
538 | _aMode of access: Internet via World Wide Web. | ||
546 | _aIn English. | ||
588 | 0 | _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 29. Mai 2023) | |
650 | 4 |
_aAngewandte Mathematik. _964805 |
|
650 | 4 |
_aBig Data. _94174 |
|
650 | 4 |
_aKünstliche Intelligenz. _975263 |
|
650 | 4 |
_aMaschinelles Lernen. _975264 |
|
650 | 7 |
_aCOMPUTERS / Information Technology. _2bisacsh _977386 |
|
700 | 1 |
_aAcharjee, Santanu, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977387 |
|
700 | 1 |
_aBhattacharyya, Souvik, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _973560 |
|
700 | 1 |
_aBhattacharyya, Souvik, _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _973560 |
|
700 | 1 |
_aChaudhuri, Dipta, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977388 |
|
700 | 1 |
_aDawud Adebayo, Agunbiade, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977389 |
|
700 | 1 |
_aGhosh, Koushik, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977390 |
|
700 | 1 |
_aGhosh, Koushik, _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _977390 |
|
700 | 1 |
_aIndu, Pabak, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977391 |
|
700 | 1 |
_aKhan, Samarpita, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977392 |
|
700 | 1 |
_aKhondekar, Mofazzal H., _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977393 |
|
700 | 1 |
_aMukherjee, Moloy, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977394 |
|
700 | 1 |
_aNureni Olawale, Adeboye, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977395 |
|
700 | 1 |
_aPaul, Rimi, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977396 |
|
700 | 1 |
_aPurkait, Souvik, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977397 |
|
700 | 1 |
_aSaha, Gokul, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977398 |
|
700 | 1 |
_aSamadder, Swetadri, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977399 |
|
700 | 1 |
_aSengupta, Anindita, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977400 |
|
700 | 1 |
_aSharma, Vivek, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977401 |
|
700 | 1 |
_aSingh, Vijai, _econtributor. _4ctb _4https://id.loc.gov/vocabulary/relators/ctb _977402 |
|
773 | 0 | 8 |
_iTitle is part of eBook package: _dDe Gruyter _tDG Plus DeG Package 2022 Part 1 _z9783110766820 |
773 | 0 | 8 |
_iTitle is part of eBook package: _dDe Gruyter _tEBOOK PACKAGE COMPLETE 2022 English _z9783110993899 |
773 | 0 | 8 |
_iTitle is part of eBook package: _dDe Gruyter _tEBOOK PACKAGE COMPLETE 2022 _z9783110994810 _oZDB-23-DGG |
773 | 0 | 8 |
_iTitle is part of eBook package: _dDe Gruyter _tEBOOK PACKAGE Engineering, Computer Sciences 2022 English _z9783110994223 |
773 | 0 | 8 |
_iTitle is part of eBook package: _dDe Gruyter _tEBOOK PACKAGE Engineering, Computer Sciences 2022 _z9783110994193 _oZDB-23-DEI |
776 | 0 |
_cEPUB _z9783110697261 |
|
776 | 0 |
_cprint _z9783110697094 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1515/9783110697216 |
856 | 4 | 0 | _uhttps://www.degruyter.com/isbn/9783110697216 |
856 | 4 | 2 |
_3Cover _uhttps://www.degruyter.com/document/cover/isbn/9783110697216/original |
912 |
_a978-3-11-076682-0 DG Plus DeG Package 2022 Part 1 _b2022 |
||
912 |
_a978-3-11-099389-9 EBOOK PACKAGE COMPLETE 2022 English _b2022 |
||
912 |
_a978-3-11-099422-3 EBOOK PACKAGE Engineering, Computer Sciences 2022 English _b2022 |
||
912 | _aEBA_CL_CHCOMSGSEN | ||
912 | _aEBA_CL_MTPY | ||
912 | _aEBA_DGALL | ||
912 | _aEBA_EBKALL | ||
912 | _aEBA_ECL_CHCOMSGSEN | ||
912 | _aEBA_ECL_MTPY | ||
912 | _aEBA_EEBKALL | ||
912 | _aEBA_ESTMALL | ||
912 | _aEBA_STMALL | ||
912 | _aGBV-deGruyter-alles | ||
912 | _aPDA12STME | ||
912 | _aPDA13ENGE | ||
912 | _aPDA18STMEE | ||
912 | _aPDA5EBK | ||
912 |
_aZDB-23-DEI _b2022 |
||
912 |
_aZDB-23-DGG _b2022 |
||
942 | _cEBK | ||
999 |
_c84513 _d84513 |