000 | 04404nam a22005295i 4500 | ||
---|---|---|---|
001 | 978-3-031-01576-2 | ||
003 | DE-He213 | ||
005 | 20240730163428.0 | ||
007 | cr nn 008mamaa | ||
008 | 220601s2017 sz | s |||| 0|eng d | ||
020 |
_a9783031015762 _9978-3-031-01576-2 |
||
024 | 7 |
_a10.1007/978-3-031-01576-2 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
100 | 1 |
_aRoijers, Diederik M. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _978463 |
|
245 | 1 | 0 |
_aMulti-Objective Decision Making _h[electronic resource] / _cby Diederik M. Roijers, Shimon Whiteson. |
250 | _a1st ed. 2017. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2017. |
|
300 |
_aXVII, 111 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSynthesis Lectures on Artificial Intelligence and Machine Learning, _x1939-4616 |
|
505 | 0 | _aPreface -- Acknowledgments -- Table of Abbreviations -- Introduction -- Multi-Objective Decision Problems -- Taxonomy -- Inner Loop Planning -- Outer Loop Planning -- Learning -- Applications -- Conclusions and Future Work -- Bibliography -- Authors' Biographies . | |
520 | _aMany real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs). First, we discuss different use cases for multi-objective decision making, and why they often necessitate explicitly multi-objective algorithms. We advocate a utility-based approach to multi-objective decision making, i.e., that what constitutes an optimal solution to a multi-objective decision problem should be derived from the availableinformation about user utility. We show how different assumptions about user utility and what types of policies are allowed lead to different solution concepts, which we outline in a taxonomy of multi-objective decision problems. Second, we show how to create new methods for multi-objective decision making using existing single-objective methods as a basis. Focusing on planning, we describe two ways to creating multi-objective algorithms: in the inner loop approach, the inner workings of a single-objective method are adapted to work with multi-objective solution concepts; in the outer loop approach, a wrapper is created around a single-objective method that solves the multi-objective problem as a series of single-objective problems. After discussing the creation of such methods for the planning setting, we discuss how these approaches apply to the learning setting. Next, we discuss three promising application domains for multi-objective decision making algorithms: energy, health, and infrastructure and transportation. Finally, we conclude by outlining important open problems and promising future directions. | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aMachine learning. _91831 |
|
650 | 0 |
_aNeural networks (Computer science) . _978464 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aMachine Learning. _91831 |
650 | 2 | 4 |
_aMathematical Models of Cognitive Processes and Neural Networks. _932913 |
700 | 1 |
_aWhiteson, Shimon. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _978465 |
|
710 | 2 |
_aSpringerLink (Online service) _978466 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031004483 |
776 | 0 | 8 |
_iPrinted edition: _z9783031027048 |
830 | 0 |
_aSynthesis Lectures on Artificial Intelligence and Machine Learning, _x1939-4616 _978467 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-01576-2 |
912 | _aZDB-2-SXSC | ||
942 | _cEBK | ||
999 |
_c84595 _d84595 |