000 02538nam a22005175i 4500
001 978-3-031-02420-7
003 DE-He213
005 20240730163457.0
007 cr nn 008mamaa
008 220601s2019 sz | s |||| 0|eng d
020 _a9783031024207
_9978-3-031-02420-7
024 7 _a10.1007/978-3-031-02420-7
_2doi
050 4 _aQA1-939
072 7 _aPB
_2bicssc
072 7 _aMAT000000
_2bisacsh
072 7 _aPB
_2thema
082 0 4 _a510
_223
100 1 _aAshlock, Daniel.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_978782
245 1 0 _aFast Start Differential Calculus
_h[electronic resource] /
_cby Daniel Ashlock.
250 _a1st ed. 2019.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2019.
300 _aXIII, 222 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
505 0 _aPreface -- Acknowledgments -- Review of Algebra -- The Library of Functions -- Limits, Derivatives, Rules, and the Meaning of the Derivative -- Curve Sketching -- Optimization -- Limits and Continuity: The Details -- Author's Biography -- Index.
520 _aThis book reviews the algebraic prerequisites of calculus, including solving equations, lines, quadratics, functions, logarithms, and trig functions. It introduces the derivative using the limit-based definition and covers the standard function library and the product, quotient, and chain rules. It explores the applications of the derivative to curve sketching and optimization and concludes with the formal definition of the limit, the squeeze theorem, and the mean value theorem.
650 0 _aMathematics.
_911584
650 0 _aStatisticsĀ .
_931616
650 0 _aEngineering mathematics.
_93254
650 1 4 _aMathematics.
_911584
650 2 4 _aStatistics.
_914134
650 2 4 _aEngineering Mathematics.
_93254
710 2 _aSpringerLink (Online service)
_978783
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031002663
776 0 8 _iPrinted edition:
_z9783031012921
776 0 8 _iPrinted edition:
_z9783031035487
830 0 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
_978784
856 4 0 _uhttps://doi.org/10.1007/978-3-031-02420-7
912 _aZDB-2-SXSC
942 _cEBK
999 _c84655
_d84655