000 | 03051nam a22005175i 4500 | ||
---|---|---|---|
001 | 978-3-031-02143-5 | ||
003 | DE-He213 | ||
005 | 20240730163822.0 | ||
007 | cr nn 008mamaa | ||
008 | 220601s2011 sz | s |||| 0|eng d | ||
020 |
_a9783031021435 _9978-3-031-02143-5 |
||
024 | 7 |
_a10.1007/978-3-031-02143-5 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
100 | 1 |
_aSmith, Noah A. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _980649 |
|
245 | 1 | 0 |
_aLinguistic Structure Prediction _h[electronic resource] / _cby Noah A. Smith. |
250 | _a1st ed. 2011. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2011. |
|
300 |
_aXX, 248 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSynthesis Lectures on Human Language Technologies, _x1947-4059 |
|
505 | 0 | _aRepresentations and Linguistic Data -- Decoding: Making Predictions -- Learning Structure from Annotated Data -- Learning Structure from Incomplete Data -- Beyond Decoding: Inference. | |
520 | _aA major part of natural language processing now depends on the use of text data to build linguistic analyzers. We consider statistical, computational approaches to modeling linguistic structure. We seek to unify across many approaches and many kinds of linguistic structures. Assuming a basic understanding of natural language processing and/or machine learning, we seek to bridge the gap between the two fields. Approaches to decoding (i.e., carrying out linguistic structure prediction) and supervised and unsupervised learning of models that predict discrete structures as outputs are the focus. We also survey natural language processing problems to which these methods are being applied, and we address related topics in probabilistic inference, optimization, and experimental methodology. Table of Contents: Representations and Linguistic Data / Decoding: Making Predictions / Learning Structure from Annotated Data / Learning Structure from Incomplete Data / Beyond Decoding: Inference. | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aNatural language processing (Computer science). _94741 |
|
650 | 0 |
_aComputational linguistics. _96146 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aNatural Language Processing (NLP). _931587 |
650 | 2 | 4 |
_aComputational Linguistics. _96146 |
710 | 2 |
_aSpringerLink (Online service) _980650 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031010156 |
776 | 0 | 8 |
_iPrinted edition: _z9783031032714 |
830 | 0 |
_aSynthesis Lectures on Human Language Technologies, _x1947-4059 _980651 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-02143-5 |
912 | _aZDB-2-SXSC | ||
942 | _cEBK | ||
999 |
_c85004 _d85004 |