000 | 04006nam a22005655i 4500 | ||
---|---|---|---|
001 | 978-3-031-02171-8 | ||
003 | DE-He213 | ||
005 | 20240730163827.0 | ||
007 | cr nn 008mamaa | ||
008 | 220601s2019 sz | s |||| 0|eng d | ||
020 |
_a9783031021718 _9978-3-031-02171-8 |
||
024 | 7 |
_a10.1007/978-3-031-02171-8 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
100 | 1 |
_aSøgaard, Anders. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _980690 |
|
245 | 1 | 0 |
_aCross-Lingual Word Embeddings _h[electronic resource] / _cby Anders Søgaard, Ivan Vulić, Sebastian Ruder, Manaal Faruqui. |
250 | _a1st ed. 2019. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2019. |
|
300 |
_aXI, 120 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSynthesis Lectures on Human Language Technologies, _x1947-4059 |
|
505 | 0 | _aPreface -- Introduction -- Monolingual Word Embedding Models -- Cross-Lingual Word Embedding Models: Typology -- A Brief History of Cross-Lingual Word Representations -- Word-Level Alignment Models -- Sentence-Level Alignment Methods -- Document-Level Alignment Models -- From Bilingual to Multilingual Training -- Unsupervised Learning of Cross-Lingual Word Embeddings -- Applications and Evaluation -- Useful Data and Software -- General Challenges and Future Directions -- Bibliography -- Authors' Biographies. | |
520 | _aThe majority of natural language processing (NLP) is English language processing, and while there is good language technology support for (standard varieties of) English, support for Albanian, Burmese, or Cebuano--and most other languages--remains limited. Being able to bridge this digital divide is important for scientific and democratic reasons but also represents an enormous growth potential. A key challenge for this to happen is learning to align basic meaning-bearing units of different languages. In this book, the authors survey and discuss recent and historical work on supervised and unsupervised learning of such alignments. Specifically, the book focuses on so-called cross-lingual word embeddings. The survey is intended to be systematic, using consistent notation and putting the available methods on comparable form, making it easy to compare wildly different approaches. In so doing, the authors establish previously unreported relations between these methods and are able to present a fast-growing literature in a very compact way. Furthermore, the authors discuss how best to evaluate cross-lingual word embedding methods and survey the resources available for students and researchers interested in this topic. | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aNatural language processing (Computer science). _94741 |
|
650 | 0 |
_aComputational linguistics. _96146 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aNatural Language Processing (NLP). _931587 |
650 | 2 | 4 |
_aComputational Linguistics. _96146 |
700 | 1 |
_aVulić, Ivan. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _980691 |
|
700 | 1 |
_aRuder, Sebastian. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _980692 |
|
700 | 1 |
_aFaruqui, Manaal. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _980693 |
|
710 | 2 |
_aSpringerLink (Online service) _980694 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031001826 |
776 | 0 | 8 |
_iPrinted edition: _z9783031010439 |
776 | 0 | 8 |
_iPrinted edition: _z9783031032998 |
830 | 0 |
_aSynthesis Lectures on Human Language Technologies, _x1947-4059 _980695 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-02171-8 |
912 | _aZDB-2-SXSC | ||
942 | _cEBK | ||
999 |
_c85015 _d85015 |