000 03645nam a22005055i 4500
001 978-3-031-02398-9
003 DE-He213
005 20240730163919.0
007 cr nn 008mamaa
008 220601s2009 sz | s |||| 0|eng d
020 _a9783031023989
_9978-3-031-02398-9
024 7 _a10.1007/978-3-031-02398-9
_2doi
050 4 _aQA1-939
072 7 _aPB
_2bicssc
072 7 _aMAT000000
_2bisacsh
072 7 _aPB
_2thema
082 0 4 _a510
_223
100 1 _aWeintraub, Steven H.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_981191
245 1 0 _aJordan Canonical Form
_h[electronic resource] :
_bTheory and Practice /
_cby Steven H. Weintraub.
250 _a1st ed. 2009.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2009.
300 _aXI, 96 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
505 0 _aJordan Canonical Form -- Solving Systems of Linear Differential Equations -- Background Results: Bases, Coordinates, and Matrices -- Properties of the Complex Exponential.
520 _aJordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (ℓESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis.
650 0 _aMathematics.
_911584
650 0 _aStatistics .
_931616
650 0 _aEngineering mathematics.
_93254
650 1 4 _aMathematics.
_911584
650 2 4 _aStatistics.
_914134
650 2 4 _aEngineering Mathematics.
_93254
710 2 _aSpringerLink (Online service)
_981192
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031012709
776 0 8 _iPrinted edition:
_z9783031035265
830 0 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
_981193
856 4 0 _uhttps://doi.org/10.1007/978-3-031-02398-9
912 _aZDB-2-SXSC
942 _cEBK
999 _c85125
_d85125