000 | 03290nam a22005415i 4500 | ||
---|---|---|---|
001 | 978-3-031-02433-7 | ||
003 | DE-He213 | ||
005 | 20240730164247.0 | ||
007 | cr nn 008mamaa | ||
008 | 220601s2021 sz | s |||| 0|eng d | ||
020 |
_a9783031024337 _9978-3-031-02433-7 |
||
024 | 7 |
_a10.1007/978-3-031-02433-7 _2doi |
|
050 | 4 | _aQA1-939 | |
072 | 7 |
_aPB _2bicssc |
|
072 | 7 |
_aMAT000000 _2bisacsh |
|
072 | 7 |
_aPB _2thema |
|
082 | 0 | 4 |
_a510 _223 |
100 | 1 |
_aKatari, Manpreet Singh. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _983402 |
|
245 | 1 | 0 |
_aStatistics is Easy _h[electronic resource] : _bCase Studies on Real Scientific Datasets / _cby Manpreet Singh Katari, Sudarshini Tyagi, Dennis Shasha. |
250 | _a1st ed. 2021. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2021. |
|
300 |
_aXI, 62 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSynthesis Lectures on Mathematics & Statistics, _x1938-1751 |
|
505 | 0 | _aAcknowledgments -- Introduction -- Chick Weight and Diet -- Breast Cancer Classification -- RNA-seq Data Set/ Summary and Perspectives -- Bibliography -- Authors' Biographies. | |
520 | _aComputational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use. | ||
650 | 0 |
_aMathematics. _911584 |
|
650 | 0 |
_aStatisticsĀ . _931616 |
|
650 | 0 |
_aEngineering mathematics. _93254 |
|
650 | 1 | 4 |
_aMathematics. _911584 |
650 | 2 | 4 |
_aStatistics. _914134 |
650 | 2 | 4 |
_aEngineering Mathematics. _93254 |
700 | 1 |
_aTyagi, Sudarshini. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _983406 |
|
700 | 1 |
_aShasha, Dennis. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _983407 |
|
710 | 2 |
_aSpringerLink (Online service) _983408 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031002793 |
776 | 0 | 8 |
_iPrinted edition: _z9783031013058 |
776 | 0 | 8 |
_iPrinted edition: _z9783031035616 |
830 | 0 |
_aSynthesis Lectures on Mathematics & Statistics, _x1938-1751 _983409 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-02433-7 |
912 | _aZDB-2-SXSC | ||
942 | _cEBK | ||
999 |
_c85502 _d85502 |