000 | 03343nam a22005895i 4500 | ||
---|---|---|---|
001 | 978-3-031-79895-5 | ||
003 | DE-He213 | ||
005 | 20240730164317.0 | ||
007 | cr nn 008mamaa | ||
008 | 220601s2018 sz | s |||| 0|eng d | ||
020 |
_a9783031798955 _9978-3-031-79895-5 |
||
024 | 7 |
_a10.1007/978-3-031-79895-5 _2doi |
|
050 | 4 | _aT1-995 | |
072 | 7 |
_aTBC _2bicssc |
|
072 | 7 |
_aTEC000000 _2bisacsh |
|
072 | 7 |
_aTBC _2thema |
|
082 | 0 | 4 |
_a620 _223 |
100 | 1 |
_aVos, Alexis De. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _983759 |
|
245 | 1 | 0 |
_aSynthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits _h[electronic resource] / _cby Alexis De Vos, Stijn De Baerdemacker, Yvan Van Rentergem. |
250 | _a1st ed. 2018. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2018. |
|
300 |
_aXV, 109 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSynthesis Lectures on Digital Circuits & Systems, _x1932-3174 |
|
505 | 0 | _aAcknowledgments -- Introduction -- Bottom -- Bottom-Up -- Top -- Top-Down -- Conclusion -- Bibliography -- Authors' Biographies -- Index. | |
520 | _aAt first sight, quantum computing is completely different from classical computing. Nevertheless, a link is provided by reversible computation. Whereas an arbitrary quantum circuit, acting on ?? qubits, is described by an ?? × ?? unitary matrix with ??=2??, a reversible classical circuit, acting on ?? bits, is described by a 2?? × 2?? permutation matrix. The permutation matrices are studied in group theory of finite groups (in particular the symmetric group ????); the unitary matrices are discussed in group theory of continuous groups (a.k.a. Lie groups, in particular the unitary group U(??)). Both the synthesis of a reversible logic circuit and the synthesis of a quantum logic circuit take advantage of the decomposition of a matrix: the former of a permutation matrix, the latter of a unitary matrix. In both cases the decomposition is into three matrices. In both cases the decomposition is not unique. | ||
650 | 0 |
_aEngineering. _99405 |
|
650 | 0 |
_aElectronic circuits. _919581 |
|
650 | 0 |
_aControl engineering. _931970 |
|
650 | 0 |
_aRobotics. _92393 |
|
650 | 0 |
_aAutomation. _92392 |
|
650 | 0 |
_aComputers. _98172 |
|
650 | 1 | 4 |
_aTechnology and Engineering. _983761 |
650 | 2 | 4 |
_aElectronic Circuits and Systems. _983763 |
650 | 2 | 4 |
_aControl, Robotics, Automation. _931971 |
650 | 2 | 4 |
_aComputer Hardware. _933420 |
700 | 1 |
_aBaerdemacker, Stijn De. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _983764 |
|
700 | 1 |
_aRentergem, Yvan Van. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _983765 |
|
710 | 2 |
_aSpringerLink (Online service) _983768 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031798962 |
776 | 0 | 8 |
_iPrinted edition: _z9783031798948 |
776 | 0 | 8 |
_iPrinted edition: _z9783031798979 |
830 | 0 |
_aSynthesis Lectures on Digital Circuits & Systems, _x1932-3174 _983769 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-79895-5 |
912 | _aZDB-2-SXSC | ||
942 | _cEBK | ||
999 |
_c85556 _d85556 |