000 03545nam a22005655i 4500
001 978-3-031-31586-2
003 DE-He213
005 20240730164503.0
007 cr nn 008mamaa
008 230613s2023 sz | s |||| 0|eng d
020 _a9783031315862
_9978-3-031-31586-2
024 7 _a10.1007/978-3-031-31586-2
_2doi
050 4 _aQC19.2-20.85
072 7 _aPHU
_2bicssc
072 7 _aSCI040000
_2bisacsh
072 7 _aPHU
_2thema
082 0 4 _a530.15
_223
100 1 _aCanzani, Yaiza.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_984741
245 1 0 _aGeodesic Beams in Eigenfunction Analysis
_h[electronic resource] /
_cby Yaiza Canzani, Jeffrey Galkowski.
250 _a1st ed. 2023.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2023.
300 _aX, 116 p. 19 illus., 6 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
505 0 _aIntroduction -- The Laplace operator -- Axiomatic introduction to semiclassical analysis -- Basic properties of eigenfunctions and eigenvalues -- The Koch-Tataru-Zworski approach to L∞ estimates -- Geodesic Beam Tools -- Applications of the geodesic beam decomposition -- Dynamical ideas.
520 _aThis book discusses the modern theory of Laplace eigenfunctions through the lens of a new tool called geodesic beams. The authors provide a brief introduction to the theory of Laplace eigenfunctions followed by an accessible treatment of geodesic beams and their applications to sup norm estimates, L^p estimates, averages, and Weyl laws. Geodesic beams have proven to be a valuable tool in the study of Laplace eigenfunctions, but their treatment is currently spread through a variety of rather technical papers. The authors present a treatment of these tools that is accessible to a wider audience of mathematicians. Readers will gain an introduction to geodesic beams and the modern theory of Laplace eigenfunctions, which will enable them to understand the cutting edge aspects of this theory. This book: Reviews several physical phenomena related to Laplace eigenfunctions, ranging from the propagation of waves to the location of quantum particles; Introduces the cutting edge theory and microlocal methods of geodesic beams; Discusses how eigenfunctions of the Laplacian play a crucial role both in physics and mathematics.
650 0 _aMathematical physics.
_911013
650 0 _aQuantum physics.
_984744
650 0 _aNuclear physics.
_919166
650 0 _aMathematics.
_911584
650 1 4 _aMathematical Methods in Physics.
_931865
650 2 4 _aQuantum Physics.
_984749
650 2 4 _aNuclear and Particle Physics.
_948409
650 2 4 _aMathematical Physics.
_911013
650 2 4 _aMathematics.
_911584
700 1 _aGalkowski, Jeffrey.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_984752
710 2 _aSpringerLink (Online service)
_984754
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031315855
776 0 8 _iPrinted edition:
_z9783031315879
776 0 8 _iPrinted edition:
_z9783031315886
830 0 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
_984755
856 4 0 _uhttps://doi.org/10.1007/978-3-031-31586-2
912 _aZDB-2-SXSC
942 _cEBK
999 _c85715
_d85715