000 03338nam a22005295i 4500
001 978-3-031-02525-9
003 DE-He213
005 20240730164713.0
007 cr nn 008mamaa
008 220601s2005 sz | s |||| 0|eng d
020 _a9783031025259
_9978-3-031-02525-9
024 7 _a10.1007/978-3-031-02525-9
_2doi
050 4 _aT1-995
072 7 _aTBC
_2bicssc
072 7 _aTEC000000
_2bisacsh
072 7 _aTBC
_2thema
082 0 4 _a620
_223
100 1 _aWang, Yanwei.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_985724
245 1 0 _aSpectral Analysis of Signals
_h[electronic resource] :
_bThe Missing Data Case /
_cby Yanwei Wang, Jian Li, Petre Stoica.
250 _a1st ed. 2005.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2005.
300 _aVIII, 99 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Signal Processing,
_x1932-1694
505 0 _aIntroduction -- Linear Source Separation -- Nonlinear Separation -- Final Comments -- Statistical Concepts -- Online Software and Data.
520 _aSpectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.
650 0 _aEngineering.
_99405
650 0 _aElectrical engineering.
_985727
650 0 _aSignal processing.
_94052
650 1 4 _aTechnology and Engineering.
_985729
650 2 4 _aElectrical and Electronic Engineering.
_985731
650 2 4 _aSignal, Speech and Image Processing.
_931566
700 1 _aLi, Jian.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_985733
700 1 _aStoica, Petre.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_926368
710 2 _aSpringerLink (Online service)
_985735
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031013973
776 0 8 _iPrinted edition:
_z9783031036538
830 0 _aSynthesis Lectures on Signal Processing,
_x1932-1694
_985736
856 4 0 _uhttps://doi.org/10.1007/978-3-031-02525-9
912 _aZDB-2-SXSC
942 _cEBK
999 _c85849
_d85849