000 03849nam a22005895i 4500
001 978-3-031-08885-8
003 DE-He213
005 20240730165301.0
007 cr nn 008mamaa
008 220831s2022 sz | s |||| 0|eng d
020 _a9783031088858
_9978-3-031-08885-8
024 7 _a10.1007/978-3-031-08885-8
_2doi
050 4 _aQA641-670
072 7 _aPBMP
_2bicssc
072 7 _aMAT012030
_2bisacsh
072 7 _aPBMP
_2thema
082 0 4 _a516.36
_223
100 1 _aNeagu, Mircea.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_988220
245 1 0 _aDual Jet Geometrization for Time-Dependent Hamiltonians and Applications
_h[electronic resource] /
_cby Mircea Neagu, Alexandru Oană.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _aXII, 87 p. 1 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
505 0 _aThe dual 1-jet space -- N-linear connections -- h-Normal N-linear connections -- Distinguished geometrization of the time-dependent Hamiltonians of momenta -- The time-dependent Hamiltonian of the least squares variational method -- Time-dependent Hamiltonian of electrodynamics -- The geometry of conformal Hamiltonian of the time-dependent coupled harmonic oscillators -- On the dual jet conformal Minkowski Hamiltonian.
520 _aThis book studies a category of mathematical objects called Hamiltonians, which are dependent on both time and momenta. The authors address the development of the distinguished geometrization on dual 1-jet spaces for time-dependent Hamiltonians, in contrast with the time-independent variant on cotangent bundles. Two parts are presented to include both geometrical theory and the applicative models: Part One: Time-dependent Hamilton Geometry and Part Two: Applications to Dynamical Systems, Economy and Theoretical Physics. The authors present 1-jet spaces and their duals as appropriate fundamental ambient mathematical spaces used to model classical and quantum field theories. In addition, the authors present dual jet Hamilton geometry as a distinct metrical approach to various interdisciplinary problems. Provides interdisciplinary geometric models in differential geometry, analytical mechanics, dynamical systems, electrodynamics, economics, and theoretical and mathematical physics Structured in two parts to present both the geometrical theory and the applicative models Studies the differential geometry of spaces in which the metric used for measuring changes in function of time and momentum.
650 0 _aGeometry, Differential.
_988221
650 0 _aMathematical physics.
_911013
650 0 _aDynamical systems.
_988223
650 0 _aDynamics.
_988225
650 0 _aNonlinear theories.
_93339
650 0 _aElectrodynamics.
_93703
650 1 4 _aDifferential Geometry.
_932082
650 2 4 _aMathematical Physics.
_911013
650 2 4 _aDynamical Systems.
_988230
650 2 4 _aApplied Dynamical Systems.
_932005
650 2 4 _aClassical Electrodynamics.
_931625
700 1 _aOană, Alexandru.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_988233
710 2 _aSpringerLink (Online service)
_988234
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031088841
776 0 8 _iPrinted edition:
_z9783031088865
776 0 8 _iPrinted edition:
_z9783031088872
830 0 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
_988235
856 4 0 _uhttps://doi.org/10.1007/978-3-031-08885-8
912 _aZDB-2-SXSC
942 _cEBK
999 _c86219
_d86219