000 04738nam a22006855i 4500
001 978-3-031-16852-9
003 DE-He213
005 20240730165650.0
007 cr nn 008mamaa
008 220919s2022 sz | s |||| 0|eng d
020 _a9783031168529
_9978-3-031-16852-9
024 7 _a10.1007/978-3-031-16852-9
_2doi
050 4 _aTA1634
072 7 _aUYQV
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQV
_2thema
082 0 4 _a006.37
_223
245 1 0 _aDomain Adaptation and Representation Transfer
_h[electronic resource] :
_b4th MICCAI Workshop, DART 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings /
_cedited by Konstantinos Kamnitsas, Lisa Koch, Mobarakol Islam, Ziyue Xu, Jorge Cardoso, Qi Dou, Nicola Rieke, Sotirios Tsaftaris.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2022.
300 _aX, 147 p. 50 illus., 46 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13542
505 0 _aDetecting Melanoma Fairly: Skin Tone Detection and Debiasing for Skin Lesion Classification -- Benchmarking Transformers for Medical Image Classification -- Supervised domain adaptation using gradients transfer for improved medical image analysis -- Stain-AgLr: Stain Agnostic Learning for Computational Histopathology using Domain Consistency and Stain Regeneration Loss -- MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation -- Unsupervised site adaptation by intra-site variability alignment -- Discriminative, Restorative, and Adversarial Learning: Stepwise Incremental Pretraining -- POPAR: Patch Order Prediction and Appearance Recovery for Self-supervised Medical Image Analysis -- Feather-Light Fourier Domain Adaptation in Magnetic Resonance Imaging -- Seamless Iterative Semi-Supervised Correction of Imperfect Labels in Microscopy Images -- Task-agnostic Continual Hippocampus Segmentation for Smooth Population Shifts -- Adaptive Optimization with Fewer Epochs Improves Across-Scanner Generalization of U-Net based Medical Image Segmentation -- CateNorm: Categorical Normalization for Robust Medical Image Segmentation.
520 _aThis book constitutes the refereed proceedings of the 4th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2022, held in conjunction with MICCAI 2022, in September 2022. DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains. .
650 0 _aComputer vision.
_990109
650 0 _aComputer engineering.
_910164
650 0 _aComputer networks .
_931572
650 0 _aMachine learning.
_91831
650 0 _aComputers.
_98172
650 0 _aApplication software.
_990110
650 1 4 _aComputer Vision.
_990111
650 2 4 _aComputer Engineering and Networks.
_990112
650 2 4 _aMachine Learning.
_91831
650 2 4 _aComputing Milieux.
_955441
650 2 4 _aComputer and Information Systems Applications.
_990113
700 1 _aKamnitsas, Konstantinos.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990114
700 1 _aKoch, Lisa.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990115
700 1 _aIslam, Mobarakol.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990116
700 1 _aXu, Ziyue.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990117
700 1 _aCardoso, Jorge.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990118
700 1 _aDou, Qi.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990119
700 1 _aRieke, Nicola.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990120
700 1 _aTsaftaris, Sotirios.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990121
710 2 _aSpringerLink (Online service)
_990122
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031168512
776 0 8 _iPrinted edition:
_z9783031168536
830 0 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13542
_923263
856 4 0 _uhttps://doi.org/10.1007/978-3-031-16852-9
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c86464
_d86464