000 05215nam a22005775i 4500
001 978-3-031-16760-7
003 DE-He213
005 20240730165652.0
007 cr nn 008mamaa
008 220921s2022 sz | s |||| 0|eng d
020 _a9783031167607
_9978-3-031-16760-7
024 7 _a10.1007/978-3-031-16760-7
_2doi
050 4 _aTA1501-1820
050 4 _aTA1634
072 7 _aUYT
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYT
_2thema
082 0 4 _a006
_223
245 1 0 _aMedical Image Learning with Limited and Noisy Data
_h[electronic resource] :
_bFirst International Workshop, MILLanD 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings /
_cedited by Ghada Zamzmi, Sameer Antani, Ulas Bagci, Marius George Linguraru, Sivaramakrishnan Rajaraman, Zhiyun Xue.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2022.
300 _aXI, 240 p. 77 illus., 71 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13559
505 0 _aEfficient and Robust Annotation Strategies -- Heatmap Regression for Lesion Detection using Pointwise Annotations.- -- Partial Annotations for the Segmentation of Large Structures with Low Annotation.- -- Abstraction in Pixel-wise Noisy Annotations Can Guide Attention to Improve Prostate Cancer Grade Assessment -- Meta Pixel Loss Correction for Medical Image Segmentation with Noisy Labels -- Re-thinking and Re-labeling LIDC-IDRI for Robust Pulmonary Cancer Prediction -- Weakly-supervised, Self-supervised, and Contrastive Learning -- Universal Lesion Detection and Classification using Limited Data and Weakly-Supervised Self-Training -- BoxShrink: From Bounding Boxes to Segmentation Masks -- Multi-Feature Vision Transformer via Self-Supervised Representation Learning for Improvement of COVID-19 Diagnosis -- SB-SSL: Slice-Based Self-Supervised Transformers for Knee Abnormality Classification from MRI -- Optimizing Transformations for Contrastive Learning in a Differentiable Framework.-Stain-based Contrastive Co-training for Histopathological Image Analysis -- Active and Continual Learning -- CLINICAL: Targeted Active Learning for Imbalanced Medical Image Classification -- Real-time Data Augmentation using Fractional Linear Transformations in Continual Learning -- DIAGNOSE: Avoiding Out-of-distribution Data using Submodular Information Measures -- Transfer Representation Learning -- Auto-segmentation of Hip Joints using MultiPlanar UNet with Transfer learning -- Asymmetry and Architectural Distortion Detection with Limited Mammography Data -- Imbalanced Data and Out-of-distribution Generalization -- Class Imbalance Correction for Improved Universal Lesion Detection and Tagging in CT -- CVAD: An Anomaly Detector for Medical Images Based on Cascade -- Approaches for Noisy, Missing, and Low Quality Data -- Visual Field Prediction with Missing and Noisy Data Based on Distance-based Loss -- Image Quality Classification for Automated Visual Evaluation of Cervical Precancer -- A Monotonicity Constraint Attention Module for Emotion Classification with Limited EEG Data -- Automated Skin Biopsy Analysis with Limited Data.
520 _aThis book constitutes the proceedings of the First Workshop on Medical Image Learning with Limited and Noisy Data, MILLanD 2022, held in conjunction with MICCAI 2022. The conference was held in Singapore. For this workshop, 22 papers from 54 submissions were accepted for publication. They selected papers focus on the challenges and limitations of current deep learning methods applied to limited and noisy medical data and present new methods for training models using such imperfect data.
650 0 _aImage processing
_xDigital techniques.
_94145
650 0 _aComputer vision.
_990138
650 1 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
_931569
700 1 _aZamzmi, Ghada.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990139
700 1 _aAntani, Sameer.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990140
700 1 _aBagci, Ulas.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990141
700 1 _aLinguraru, Marius George.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990142
700 1 _aRajaraman, Sivaramakrishnan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990143
700 1 _aXue, Zhiyun.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990144
710 2 _aSpringerLink (Online service)
_990145
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031167591
776 0 8 _iPrinted edition:
_z9783031167614
830 0 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13559
_923263
856 4 0 _uhttps://doi.org/10.1007/978-3-031-16760-7
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c86467
_d86467