000 04757nam a22006495i 4500
001 978-3-031-17247-2
003 DE-He213
005 20240730165657.0
007 cr nn 008mamaa
008 220921s2022 sz | s |||| 0|eng d
020 _a9783031172472
_9978-3-031-17247-2
024 7 _a10.1007/978-3-031-17247-2
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aMachine Learning for Medical Image Reconstruction
_h[electronic resource] :
_b5th International Workshop, MLMIR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings /
_cedited by Nandinee Haq, Patricia Johnson, Andreas Maier, Chen Qin, Tobias Würfl, Jaejun Yoo.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _aVIII, 157 p. 83 illus., 54 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13587
505 0 _aDeep Learning for Magnetic Resonance Imaging -- Rethinking the optimization process for self-supervised model-driven MRI reconstruction -- NPB-REC: Non-parametric Assessment of Uncertainty in Deep-learning-based MRI Reconstruction from Undersampled Data -- Adversarial Robustness of MR Image Reconstruction under Realistic Perturbations -- High-Fidelity MRI Reconstruction with the Densely Connected Network Cascade and Feature Residual Data Consistency Priors -- Metal artifact correction MRI using multi-contrast deep neural networks for diagnosis of degenerative spinal diseases -- Segmentation-Aware MRI Reconstruction -- MRI Reconstruction with Conditional Adversarial Transformers -- Deep Learning for General Image Reconstruction- A Noise-level-aware Framework for PET Image Denoising -- DuDoTrans: Dual-Domain Transformer for Sparse-View CT Reconstruction -- Ce Wang, Kun Shang, Haimiao Zhang, Qian Li, and S. Kevin Zhou Deep Denoising Network for X-Ray Fluoroscopic Image Sequences of Moving Objects -- PP-MPI: A Deep Plug-and-Play Prior for Magnetic Particle Imaging Reconstruction -- Learning while Acquisition: Towards Active Learning Framework for Beamforming in Ultrasound Imaging -- DPDudoNet: Deep-Prior based Dual-domain Network for Low-dose Computed Tomography Reconstruction -- MTD-GAN: Multi-Task Discriminator based Generative Adversarial Networks for Low-Dose CT Denoising -- Uncertainty-Informed Bayesian PET Image Reconstruction using a Deep Image Prior.
520 _aThis book constitutes the refereed proceedings of the 5th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2022, held in conjunction with MICCAI 2022, in September 2022, held in Singapore. The 15 papers presented were carefully reviewed and selected from 19 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.
650 0 _aArtificial intelligence.
_93407
650 0 _aImage processing
_xDigital techniques.
_94145
650 0 _aComputer vision.
_990170
650 0 _aComputers.
_98172
650 0 _aApplication software.
_990171
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
_931569
650 2 4 _aComputing Milieux.
_955441
650 2 4 _aComputer and Information Systems Applications.
_990172
700 1 _aHaq, Nandinee.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990173
700 1 _aJohnson, Patricia.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990174
700 1 _aMaier, Andreas.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990175
700 1 _aQin, Chen.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990176
700 1 _aWürfl, Tobias.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990177
700 1 _aYoo, Jaejun.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_990178
710 2 _aSpringerLink (Online service)
_990179
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031172465
776 0 8 _iPrinted edition:
_z9783031172489
830 0 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13587
_923263
856 4 0 _uhttps://doi.org/10.1007/978-3-031-17247-2
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c86472
_d86472