000 04270nam a22005895i 4500
001 978-981-99-1999-4
003 DE-He213
005 20240730170458.0
007 cr nn 008mamaa
008 231114s2024 si | s |||| 0|eng d
020 _a9789819919994
_9978-981-99-1999-4
024 7 _a10.1007/978-981-99-1999-4
_2doi
050 4 _aQA76.9.N38
072 7 _aUYQL
_2bicssc
072 7 _aCOM073000
_2bisacsh
072 7 _aUYQL
_2thema
082 0 4 _a006.35
_223
100 1 _aLee, Raymond S. T.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_993842
245 1 0 _aNatural Language Processing
_h[electronic resource] :
_bA Textbook with Python Implementation /
_cby Raymond S. T. Lee.
250 _a1st ed. 2024.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2024.
300 _aXXXII, 437 p. 1 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPart I - Concepts and Technology -- Chapter 1. Introduction to Natural Language Processing -- Chapter 2. N-gram Language Model -- Chapter 3. Part-of-Speech Tagging -- Chapter 4. Syntax and Parsing -- Chapter 5. Meaning Representation -- Chapter 6. Semantic Analysis -- Chapter 7. Pragmatic Analysis and Discourse -- Chapter 8. Transfer Learning and Transformer Technology -- Chapter 9. Major Natural Language Processing Applications -- Part II -Natural Language Processing Workshops with Python Implementation in 14 Hours -- Chapter 10. Workshop#1 - Basics of Natural Language Toolkit (Hour 1-2) -- Chapter 11. Workshop#2 - N-grams Modeling with Natural Language Toolkit (Hour 3-4) -- Chapter 12. Workshop#3 - Part-of-Speech Tagging using Natural Language Toolkit (Hour 5-6) -- Chapter 13. Workshop#4 - Semantic Analysis and Word Vectors using spaCy (Hour 7-8) -- Chapter 14. Workshop#5 - Sentiment Analysis and Text Classification (Hour 9-10) -- Chapter 15. Workshop#6 - Transformers with spaCy and TensorFlow (Hour11-12) -- Chapter 16. Workshop#7 - Building Chatbot with TensorFlow and Transformer Technology (Hour 13-14).
520 _aThis textbook presents an up-to-date and comprehensive overview of Natural Language Processing (NLP), from basic concepts to core algorithms and key applications. Further, it contains seven step-by-step NLP workshops (total length: 14 hours) offering hands-on practice with essential Python tools like NLTK, spaCy, TensorFlow Kera, Transformer and BERT. The objective of this book is to provide readers with a fundamental grasp of NLP and its core technologies, and to enable them to build their own NLP applications (e.g. Chatbot systems) using Python-based NLP tools. It is both a textbook and NLP tool-book intended for the following readers: undergraduate students from various disciplines who want to learn NLP; lecturers and tutors who want to teach courses or tutorials for undergraduate/graduate students on NLP and related AI topics; and readers with various backgrounds who want to learn NLP, and more importantly, to build workable NLP applications after completing its 14 hours of Python-based workshops.
650 0 _aNatural language processing (Computer science).
_94741
650 0 _aArtificial intelligence.
_93407
650 0 _aComputational intelligence.
_97716
650 0 _aMachine learning.
_91831
650 0 _aPython (Computer program language).
_96666
650 0 _aArtificial intelligence
_xData processing.
_921787
650 1 4 _aNatural Language Processing (NLP).
_931587
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputational Intelligence.
_97716
650 2 4 _aMachine Learning.
_91831
650 2 4 _aPython.
_934340
650 2 4 _aData Science.
_934092
710 2 _aSpringerLink (Online service)
_993848
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789819919987
776 0 8 _iPrinted edition:
_z9789819920006
776 0 8 _iPrinted edition:
_z9789819920013
856 4 0 _uhttps://doi.org/10.1007/978-981-99-1999-4
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cEBK
999 _c86983
_d86983