000 05917nam a22006495i 4500
001 978-3-030-57321-8
003 DE-He213
005 20240730170514.0
007 cr nn 008mamaa
008 200819s2020 sz | s |||| 0|eng d
020 _a9783030573218
_9978-3-030-57321-8
024 7 _a10.1007/978-3-030-57321-8
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aMachine Learning and Knowledge Extraction
_h[electronic resource] :
_b4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland, August 25-28, 2020, Proceedings /
_cedited by Andreas Holzinger, Peter Kieseberg, A Min Tjoa, Edgar Weippl.
250 _a1st ed. 2020.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2020.
300 _aXI, 552 p. 171 illus., 112 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aInformation Systems and Applications, incl. Internet/Web, and HCI,
_x2946-1642 ;
_v12279
505 0 _aExplainable Artificial Intelligence: concepts, applications, research challenges and visions -- The Explanation Game: Explaining Machine Learning Models Using Shapley Values -- Back to the Feature: a Neural-Symbolic Perspective on Explainable AI -- Explain Graph Neural Networks to Understand Weighted Graph Features in Node Classification -- Explainable Reinforcement Learning: A Survey -- A Projected Stochastic Gradient algorithm for estimating Shapley Value applied in attribute importance -- Explaining predictive models with mixed features using Shapley values and conditional inference trees -- Explainable Deep Learning for Fault Prognostics in Complex Systems: A Particle Accelerator Use-Case -- eXDiL: A Tool for Classifying and eXplaining Hospital Discharge Letters -- Data Understanding and Interpretation by the Cooperation of Data Analyst and Medical Expert -- A study on the fusion of pixels and patient metadata in CNN-based classification of skin lesion images -- The European legal framework for medical AI -- An Efficient Method for Mining Informative Association Rules in Knowledge Extraction -- Interpretation of SVM using Data Mining Technique to Extract Syllogistic Rules -- Non-Local Second-Order Attention Network For Single Image Super Resolution -- ML-ModelExplorer: An explorative model-agnostic approach to evaluate and compare multi-class classifiers -- Subverting Network Intrusion Detection: Crafting Adversarial Examples Accounting for Domain-Specific Constraints -- Scenario-based Requirements Elicitation for User-Centric Explainable AI A Case in Fraud Detection -- On-the-fly Black-Box Probably Approximately Correct Checking of Recurrent Neural Networks -- Active Learning for Auditory Hierarchy -- Improving short text classification through global augmentation methods -- Interpretable Topic Extraction and Word Embedding Learning using row-stochastic DEDICOM -- A Clustering Backed Deep Learning Approach for Document Layout Analysis -- Calibrating Human-AI Collaboration: Impactof Risk, Ambiguity and Transparency on Algorithmic Bias -- Applying AI in Practice: Key Challenges and Lessons Learned -- Function Space Pooling For Graph Convolutional Networks -- Analysis of optical brain signals using connectivity graph networks -- Property-Based Testing for Parameter Learning of Probabilistic Graphical Models -- An Ensemble Interpretable Machine Learning Scheme for Securing Data Quality at the Edge -- Inter-Space Machine Learning in Smart Environments.
520 _aThis book constitutes the refereed proceedings of the 4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, held in Dublin, Ireland, in August 2020. The 30 revised full papers presented were carefully reviewed and selected from 140 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity. Due to the Corona pandemic CD-MAKE 2020 was held as a virtual event.
650 0 _aArtificial intelligence.
_93407
650 0 _aImage processing
_xDigital techniques.
_94145
650 0 _aComputer vision.
_994017
650 0 _aSoftware engineering.
_94138
650 0 _aComputers.
_98172
650 0 _aApplication software.
_994019
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
_931569
650 2 4 _aSoftware Engineering.
_94138
650 2 4 _aComputing Milieux.
_955441
650 2 4 _aComputer and Information Systems Applications.
_994021
700 1 _aHolzinger, Andreas.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_994023
700 1 _aKieseberg, Peter.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_994025
700 1 _aTjoa, A Min.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_994026
700 1 _aWeippl, Edgar.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_994027
710 2 _aSpringerLink (Online service)
_994029
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030573201
776 0 8 _iPrinted edition:
_z9783030573225
830 0 _aInformation Systems and Applications, incl. Internet/Web, and HCI,
_x2946-1642 ;
_v12279
_994031
856 4 0 _uhttps://doi.org/10.1007/978-3-030-57321-8
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c87005
_d87005